#define _USE_MATH_DEFINES #include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template struct Edge { int src, dst; CostType cost; Edge(int src, int dst, CostType cost = 0) : src(src), dst(dst), cost(cost) {} inline bool operator<(const Edge &x) const { return cost != x.cost ? cost < x.cost : dst != x.dst ? dst < x.dst : src < x.src; } inline bool operator<=(const Edge &x) const { return !(x < *this); } inline bool operator>(const Edge &x) const { return x < *this; } inline bool operator>=(const Edge &x) const { return !(*this < x); } }; struct UnionFind { UnionFind(int n) : data(n, -1) {} int root(int ver) { return data[ver] < 0 ? ver : data[ver] = root(data[ver]); } bool unite(int u, int v) { u = root(u); v = root(v); if (u == v) return false; if (data[u] > data[v]) std::swap(u, v); data[u] += data[v]; data[v] = u; return true; } bool same(int u, int v) { return root(u) == root(v); } int size(int ver) { return -data[root(ver)]; } private: std::vector data; }; int main() { int n, m; cin >> n >> m; vector> road; while (m--) { int s, t, d; cin >> s >> t >> d; --s; --t; road.emplace_back(s, t, d); } sort(ALL(road)); int ans = INF; UnionFind uf(n); vector> graph(n); while (!uf.same(0, n - 1) || (!road.empty() && road.back().cost == ans)) { auto [s, t, d] = road.back(); road.pop_back(); ans = d; uf.unite(s, t); graph[s].emplace_back(t); graph[t].emplace_back(s); } vector dist(n, -1); dist[0] = 0; queue que({0}); while (!que.empty()) { int ver = que.front(); que.pop(); for (int e : graph[ver]) { if (dist[e] == -1) { dist[e] = dist[ver] + 1; que.emplace(e); } } } cout << ans << ' ' << dist[n - 1] << '\n'; return 0; }