#include using namespace std; #define rep(i, n) for(int i = 0; i < n; i++) #define rep2(i, x, n) for(int i = x; i <= n; i++) #define rep3(i, x, n) for(int i = x; i >= n; i--) #define each(e, v) for(auto &e: v) #define pb push_back #define eb emplace_back #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define sz(x) (int)x.size() using ll = long long; using pii = pair; using pil = pair; using pli = pair; using pll = pair; const int MOD = 1000000007; //const int MOD = 998244353; const int inf = (1<<30)-1; const ll INF = (1LL<<60)-1; template bool chmax(T &x, const T &y) {return (x < y)? (x = y, true) : false;}; template bool chmin(T &x, const T &y) {return (x > y)? (x = y, true) : false;}; struct io_setup{ io_setup(){ ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; template struct Mod_Int{ int x; Mod_Int() : x(0) {} Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} Mod_Int &operator += (const Mod_Int &p){ if((x += p.x) >= mod) x -= mod; return *this; } Mod_Int &operator -= (const Mod_Int &p){ if((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int &operator *= (const Mod_Int &p){ x = (int) (1LL * x * p.x % mod); return *this; } Mod_Int &operator /= (const Mod_Int &p){ *this *= p.inverse(); return *this; } Mod_Int &operator ++ () {return *this += Mod_Int(1);} Mod_Int operator ++ (int){ Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator -- () {return *this -= Mod_Int(1);} Mod_Int operator -- (int){ Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator - () const {return Mod_Int(-x);} Mod_Int operator + (const Mod_Int &p) const {return Mod_Int(*this) += p;} Mod_Int operator - (const Mod_Int &p) const {return Mod_Int(*this) -= p;} Mod_Int operator * (const Mod_Int &p) const {return Mod_Int(*this) *= p;} Mod_Int operator / (const Mod_Int &p) const {return Mod_Int(*this) /= p;} bool operator == (const Mod_Int &p) const {return x == p.x;} bool operator != (const Mod_Int &p) const {return x != p.x;} Mod_Int inverse() const{ assert(*this != Mod_Int(0)); return pow(mod-2); } Mod_Int pow(long long k) const{ Mod_Int now = *this, ret = 1; for(; k > 0; k >>= 1, now *= now){ if(k&1) ret *= now; } return ret; } friend ostream &operator << (ostream &os, const Mod_Int &p){ return os << p.x; } friend istream &operator >> (istream &is, Mod_Int &p){ long long a; is >> a; p = Mod_Int(a); return is; } }; using mint = Mod_Int; template struct Combination{ using T = Mod_Int; vector _fac, _ifac; Combination(int n){ _fac.resize(n+1), _ifac.resize(n+1); _fac[0] = 1; for(int i = 1; i <= n; i++) _fac[i] = _fac[i-1]*i; _ifac[n] = _fac[n].inverse(); for(int i = n; i >= 1; i--) _ifac[i-1] = _ifac[i]*i; } T fac(int k) const {return _fac[k];} T ifac(int k) const {return _ifac[k];} T comb(int n, int k) const{ if(k < 0 || n < k) return 0; return fac(n)*ifac(n-k)*ifac(k); } T comb2(int x, int y) const {return comb(x+y, x);} T perm(int n, int k) const{ if(k < 0 || n < k) return 0; return fac(n)*ifac(n-k); } T second_stirling_number(int n, int k) const{ //n個の区別できる玉を、k個の区別しない箱に、各箱に1個以上玉が入るように入れる場合の数 T ret = 0; for(int i = 0; i <= k; i++){ T tmp = comb(k, i)*T(i).pow(n); ret += ((k-i)&1)? -tmp : tmp; } return ret*ifac(k); } T bell_number(int n, int k) const{ //n個の区別できる玉を、k個の区別しない箱に入れる場合の数 if(n == 0) return 1; k = min(k, n); vector pref(k+1); pref[0] = 1; for(int i = 1; i <= k; i++){ if(i&1) pref[i] = pref[i-1]-ifac(i); else pref[i] = pref[i-1]+ifac(i); } T ret = 0; for(int i = 1; i <= k; i++){ ret += T(i).pow(n)*ifac(i)*pref[k-i]; } return ret; } }; using comb = Combination; int main(){ comb C(1000000); int N, A, B, L; cin >> N >> A >> B >> L; vector M(N); rep(i, N) cin >> M[i]; vector>> dp(N+1, vector>(N+1, vector(B+1, 0))); dp[0][0][0] = 1; rep(i, N){ rep(j, N){ rep(k, B+1){ dp[i+1][j][k] += dp[i][j][k]; } mint S = 0; rep(k, B){ S += dp[i][j][k]; if(k-M[i] >= 0) S -= dp[i][j][k-M[i]]; dp[i+1][j+1][k+1] += S; } } } mint ans = 0; rep(j, N+1){ rep(k, B+1){ int K = A-(L*j-k); ans += dp[N][j][k]*C.comb(K+N-1, N-1); } } cout << ans << '\n'; }