#![allow(unused_imports, unused_macros)] use kyoproio::*; use std::{ collections::*, io::{self, prelude::*}, iter, mem, }; fn run(mut kin: I, mut out: O) { let (n, m): (usize, usize) = kin.parse(); let mut g = LabeledGraph::::builder(n + 1); g.extend_bi_edges(kin.parse_iter().take(m)); let g = g.build(); let mut l = 0; let mut r = 1e9 as i32 + 1; let mut min = 0; let mut que = VecDeque::new(); let mut dist = vec![0; n + 1]; while r - l > 1 { let h = (l + r) / 2; que.clear(); que.push_back(1); for d in &mut dist { *d = 1 << 29; } dist[1] = 0; while let Some(u) = que.pop_front() { if u == n { break; } for &(v, d) in &g[u] { if h <= d && dist[v] >= 1 << 29 { dist[v] = dist[u] + 1; que.push_back(v); } } } if dist[n] < 1 << 29 { min = dist[n]; l = h; } else { r = h; } } wln!(out, "{} {}", l, min); } use std::{fmt, mem::ManuallyDrop, ops}; pub struct Graph(LabeledGraph<()>); impl Graph { pub fn builder(n: usize) -> GraphBuilder { GraphBuilder(LabeledGraph::builder(n)) } pub fn len(&self) -> usize { self.0.len() } pub fn edges(&self) -> Edges { Edges(self.0.edges()) } } impl ops::Index for Graph { type Output = [usize]; fn index(&self, u: usize) -> &Self::Output { // https://rust-lang.github.io/unsafe-code-guidelines/layout/structs-and-tuples.html#structs-with-1-zst-fields unsafe { &*(self.0.index(u) as *const _ as *const _) } } } impl ops::IndexMut for Graph { fn index_mut(&mut self, u: usize) -> &mut Self::Output { unsafe { &mut *(self.0.index_mut(u) as *mut _ as *mut _) } } } impl fmt::Debug for Graph { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_map() .entries((0..self.len()).map(|u| (u, &self[u]))) .finish() } } pub struct Edges<'a>(LabeledEdges<'a, ()>); impl<'a> Iterator for Edges<'a> { type Item = (usize, usize); fn next(&mut self) -> Option { self.0.next().map(|(u, v, _)| (u, v)) } fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } pub struct GraphBuilder(LabeledGraphBuilder<()>); impl GraphBuilder { pub fn edge(&mut self, u: usize, v: usize) { self.0.edge(u, v, ()); } pub fn bi_edge(&mut self, u: usize, v: usize) { self.0.bi_edge(u, v, ()); } pub fn extend_bi_edges>(&mut self, iter: I) { self.0 .extend_bi_edges(iter.into_iter().map(|(u, v)| (u, v, ()))) } pub fn build(self) -> Graph { Graph(self.0.build()) } } impl Extend<(usize, usize)> for GraphBuilder { fn extend>(&mut self, iter: I) { self.0.extend(iter.into_iter().map(|(u, v)| (u, v, ()))) } } pub struct LabeledGraph { edges: Box<[(usize, T)]>, heads: Box<[usize]>, } impl LabeledGraph { pub fn builder(n: usize) -> LabeledGraphBuilder { LabeledGraphBuilder { nodes: Vec::new(), heads: vec![!0; n], } } pub fn len(&self) -> usize { self.heads.len() - 1 } pub fn edges(&self) -> LabeledEdges { LabeledEdges { g: self, u: 0, i: 0, } } } impl ops::Index for LabeledGraph { type Output = [(usize, T)]; fn index(&self, u: usize) -> &Self::Output { &self.edges[self.heads[u]..self.heads[u + 1]] } } impl ops::IndexMut for LabeledGraph { fn index_mut(&mut self, u: usize) -> &mut Self::Output { &mut self.edges[self.heads[u]..self.heads[u + 1]] } } impl fmt::Debug for LabeledGraph { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_map() .entries((0..self.len()).map(|u| (u, &self[u]))) .finish() } } pub struct LabeledEdges<'a, T> { g: &'a LabeledGraph, u: usize, i: usize, } impl<'a, T> Iterator for LabeledEdges<'a, T> { type Item = (usize, usize, &'a T); fn next(&mut self) -> Option { let (v, l) = self.g.edges.get(self.i)?; while self.g.heads[self.u + 1] == self.i { self.u += 1; } self.i += 1; Some((self.u, *v, l)) } fn size_hint(&self) -> (usize, Option) { let len = self.g.edges.len(); (len, Some(len)) } } pub struct LabeledGraphBuilder { nodes: Vec<(usize, ManuallyDrop, usize)>, heads: Vec, } impl LabeledGraphBuilder { pub fn edge(&mut self, u: usize, v: usize, l: T) { self.nodes.push((v, ManuallyDrop::new(l), self.heads[u])); self.heads[u] = self.nodes.len() - 1; } pub fn bi_edge(&mut self, u: usize, v: usize, l: T) where T: Clone, { self.edge(u, v, l.clone()); self.edge(v, u, l); } pub fn extend_bi_edges>(&mut self, iter: I) where T: Clone, { for (u, v, l) in iter { self.bi_edge(u, v, l); } } pub fn build(mut self) -> LabeledGraph { let mut edges = Vec::with_capacity(self.nodes.len()); let mut heads = Vec::with_capacity(self.heads.len() + 1); for &(mut h) in &self.heads { heads.push(edges.len()); while let Some((v, l, next)) = self.nodes.get_mut(h) { unsafe { edges.push((*v, ManuallyDrop::take(l))); } h = *next; } } heads.push(edges.len()); LabeledGraph { edges: edges.into(), heads: heads.into(), } } } impl Extend<(usize, usize, T)> for LabeledGraphBuilder { fn extend>(&mut self, iter: I) { for (u, v, l) in iter { self.edge(u, v, l); } } } // ----------------------------------------------------------------------------- fn main() -> io::Result<()> { std::thread::Builder::new() .stack_size(1 << 26) .spawn(|| { run( Scanner::new(io::stdin().lock()), io::BufWriter::new(io::stdout().lock()), ) })? .join() .unwrap(); Ok(()) } #[macro_export] macro_rules! w { ($($arg:tt)*) => { write!($($arg)*).unwrap(); } } #[macro_export] macro_rules! wln { ($dst:expr $(, $($arg:tt)*)?) => {{ writeln!($dst $(, $($arg)*)?).unwrap(); #[cfg(debug_assertions)] $dst.flush().unwrap(); }} } #[macro_export] macro_rules! w_iter { ($dst:expr, $fmt:expr, $iter:expr, $delim:expr) => {{ let mut first = true; for elem in $iter { if first { w!($dst, $fmt, elem); first = false; } else { w!($dst, concat!($delim, $fmt), elem); } } }}; ($dst:expr, $fmt:expr, $iter:expr) => { w_iter!($dst, $fmt, $iter, " ") }; } #[macro_export] macro_rules! w_iter_ln { ($dst:expr, $($t:tt)*) => {{ w_iter!($dst, $($t)*); wln!($dst); }} } #[macro_export] macro_rules! e { ($($t:tt)*) => { #[cfg(debug_assertions)] eprint!($($t)*) } } #[macro_export] macro_rules! eln { ($($t:tt)*) => { #[cfg(debug_assertions)] eprintln!($($t)*) } } #[macro_export] macro_rules! __tstr { ($h:expr $(, $t:expr)+) => { concat!(__tstr!($($t),+) , ", {} = {:?}") }; ($h:expr) => { "[{}:{}] {} = {:?}" }; () => { "[{}:{}]" } } #[macro_export] macro_rules! d { ($($a:expr),*) => { eln!(__tstr!($($a),*), file!(), line!(), $(stringify!($a), $a),*) }; } pub mod kyoproio { use std::{ fmt::Display, io::{self, prelude::*}, iter::FromIterator, marker::PhantomData, mem::{self, MaybeUninit}, str, }; pub trait Input { fn bytes(&mut self) -> &[u8]; fn str(&mut self) -> &str { str::from_utf8(self.bytes()).unwrap() } fn parse(&mut self) -> T { T::parse(self) } fn parse_iter(&mut self) -> ParseIter { ParseIter(self, PhantomData) } fn collect>(&mut self, n: usize) -> B { self.parse_iter().take(n).collect() } fn map U, B: FromIterator>(&mut self, n: usize, f: F) -> B { self.parse_iter().take(n).map(f).collect() } } impl Input for &mut I { fn bytes(&mut self) -> &[u8] { (**self).bytes() } } pub struct Scanner { src: R, buf: Vec, pos: usize, len: usize, } impl Scanner { pub fn new(src: R) -> Self { Self { src, buf: vec![0; 1 << 16], pos: 0, len: 0, } } fn read(&mut self) -> usize { if self.pos > 0 { self.buf.copy_within(self.pos..self.len, 0); self.len -= self.pos; self.pos = 0; } else if self.len >= self.buf.len() { self.buf.resize(2 * self.buf.len(), 0); } let n = self.src.read(&mut self.buf[self.len..]).unwrap(); self.len += n; assert!(self.len <= self.buf.len()); n } } impl Input for Scanner { fn bytes(&mut self) -> &[u8] { loop { while let Some(d) = unsafe { self.buf.get_unchecked(self.pos..self.len) } .iter() .position(u8::is_ascii_whitespace) { let p = self.pos; self.pos += d + 1; if d > 0 { return unsafe { self.buf.get_unchecked(p..p + d) }; } } if self.read() == 0 { let p = self.pos; self.pos = self.len; return unsafe { self.buf.get_unchecked(p..self.len) }; } } } } pub struct ParseIter<'a, T, I: ?Sized>(&'a mut I, PhantomData<*const T>); impl<'a, T: Parse, I: Input + ?Sized> Iterator for ParseIter<'a, T, I> { type Item = T; fn next(&mut self) -> Option { Some(self.0.parse()) } fn size_hint(&self) -> (usize, Option) { (!0, None) } } pub trait Parse: Sized { fn parse(src: &mut I) -> Self; } impl Parse for Vec { fn parse(src: &mut I) -> Self { src.bytes().to_owned() } } macro_rules! from_str { ($($T:ty)*) => {$( impl Parse for $T { fn parse(src: &mut I) -> Self { src.str().parse::<$T>().unwrap() } } )*} } from_str!(String char bool f32 f64); macro_rules! int { ($($I:ty: $U:ty)*) => {$( impl Parse for $I { fn parse(src: &mut I) -> Self { let f = |s: &[u8]| s.iter().fold(0, |x, b| 10 * x + (b & 0xf) as $I); let s = src.bytes(); if let Some((&b'-', t)) = s.split_first() { -f(t) } else { f(s) } } } impl Parse for $U { fn parse(src: &mut I) -> Self { src.bytes().iter().fold(0, |x, b| 10 * x + (b & 0xf) as $U) } } )*} } int!(isize:usize i8:u8 i16:u16 i32:u32 i64:u64 i128:u128); macro_rules! tuple { ($H:ident $($T:ident)*) => { impl<$H: Parse, $($T: Parse),*> Parse for ($H, $($T),*) { fn parse(src: &mut I) -> Self { ($H::parse(src), $($T::parse(src)),*) } } tuple!($($T)*); }; () => {} } tuple!(A B C D E F G); macro_rules! array { ($($N:literal)*) => {$( impl Parse for [T; $N] { fn parse(src: &mut I) -> Self { unsafe { let mut arr: [MaybeUninit; $N] = MaybeUninit::uninit().assume_init(); for elem in &mut arr { *elem = MaybeUninit::new(src.parse()); } mem::transmute_copy(&arr) } } } )*} } array!(1 2 3 4 5 6 7 8); }