class Union_Find(): def __init__(self,N): """0,1,...,n-1を要素として初期化する. N:要素数 """ self.n=N self.parents=[-1]*N self.rank=[0]*N def find(self, x): """要素xの属している族を調べる. x:要素 """ V=[] while self.parents[x]>=0: V.append(x) x=self.parents[x] for v in V: self.parents[v]=x return x def union(self, x, y): """要素x,yを同一視する. x,y:要素 """ x=self.find(x) y=self.find(y) if x==y: return if self.rank[x]<self.rank[y]: x,y=y,x self.parents[x]+=self.parents[y] self.parents[y]=x if self.rank[x]==self.rank[y]: self.rank[x]+=1 def size(self, x): """要素xの属している要素の数. x:要素 """ return -self.parents[self.find(x)] def same(self, x, y): """要素x,yは同一視されているか? x,y:要素 """ return self.find(x) == self.find(y) def members(self, x): """要素xが属している族の要素. ※族の要素の個数が欲しいときはsizeを使うこと!! x:要素 """ root = self.find(x) return [i for i in range(self.n) if self.find(i) == root] def roots(self): """族の名前のリスト """ return [i for i, x in enumerate(self.parents) if x < 0] def group_count(self): """族の個数 """ return len(self.roots()) def all_group_members(self): """全ての族の出力 """ X={r:[] for r in self.roots()} for k in range(self.n): X[self.find(k)].append(k) return X def refresh(self): for i in range(self.n): _=self.find(i) def __str__(self): return '\n'.join('{}: {}'.format(r, self.members(r)) for r in self.roots()) def __repr__(self): return self.__str__() class Graph: #入力定義 def __init__(self,vertex=[]): self.vertex=set(vertex) self.edge_number=0 self.adjacent={v:set() for v in vertex} #頂点の追加 def add_vertex(self,*adder): for v in adder: if not self.vertex_exist(v): self.adjacent[v]=set() self.vertex.add(v) #辺の追加 def add_edge(self,u,v): self.add_vertex(u) self.add_vertex(v) if not self.edge_exist(u,v): self.adjacent[u].add(v) self.adjacent[v].add(u) self.edge_number+=1 #辺を除く def remove_edge(self,u,v): self.add_vertex(u) self.add_vertex(v) if self.edge_exist(u,v): self.adjacent[u].discard(v) self.adjacent[v].discard(u) self.edge_number-=1 #頂点を除く def remove_vertex(self,*vertexes): for v in vertexes: if self.vertex_exist(v): U=self.neighbohood(v) for u in U: self.edge_number-=1 self.adjacent[u].discard(v) del self.adjacent[v] self.vertex.discard(v) #Walkの追加 def add_walk(self,*walk): n=len(walk) for i in range(n-1): self.add_edge(walk[i],walk[i+1]) #Cycleの追加 def add_cycle(self,*cycle): self.add_walk(*cycle) self.add_edge(cycle[-1],cycle[0]) #頂点の交換 def __vertex_swap(self,p,q): self.vertex.sort() #グラフに頂点が存在するか否か def vertex_exist(self,v): return v in self.vertex #グラフに辺が存在するか否か def edge_exist(self,u,v): if not(self.vertex_exist(u) and self.vertex_exist(v)): return False return v in self.adjacent[u] #近傍 def neighbohood(self,v): if not self.vertex_exist(v): return [] return list(self.adjacent[v]) #次数 def degree(self,v): if not self.vertex_exist(v): return 0 return len(self.adjacent[v]) #頂点数 def vertex_count(self): return len(self.vertex) #辺数 def edge_count(self): return self.edge_number #頂点vを含む連結成分 def connected_component(self,v): if v not in self.adjacent: return [] from collections import deque T={u:0 for u in self.vertex} T[v]=1 Q=deque([v]) while Q: u=Q.popleft() for w in self.adjacent[u]: if not T[w]: T[w]=1 Q.append(w) return [x for x in self.adjacent if T[x]] #距離 def distance(self,u,v): from collections import deque inf=float("inf") T={v:inf for v in self.vertex} if u==v: return 0 Q=deque([u]) T[u]=0 while Q: w=Q.popleft() for x in self.adjacent[w]: if T[x]==inf: T[x]=T[w]+1 Q.append(x) if x==v: return T[x] return inf #ある1点からの距離 def distance_all(self,u): from collections import deque inf=float("inf") T={v:inf for v in self.vertex} Q=deque([u]) T[u]=0 while Q: w=Q.popleft() for x in self.adjacent[w]: if T[x]==inf: T[x]=T[w]+1 Q.append(x) return T #最短路 def shortest_path(self,u,v): from collections import deque inf=float("inf") T={v:None for v in self.vertex} if u==v: return [u] Q=deque([u]) T[u]=u while Q: w=Q.popleft() for x in self.adjacent[w]: if not T[x]: T[x]=w Q.append(x) if x==v: P=[v] a=v while a!=u: a=T[a] P.append(a) return P[::-1] return None #何かしらの頂点を選ぶ. def poping_vertex(self): v=self.vertex.pop() self.vertex.add(v) return v #================================================ import sys input=sys.stdin.readline N,M=map(int,input().split()) E=[] for _ in range(M): s,t,d=map(int,input().split()) E.append((s,t,d)) E.sort(key=lambda x:x[-1],reverse=True) U=Union_Find(N+1) G=Graph(list(range(1,N+1))) for s,t,d in E: U.union(s,t) G.add_edge(s,t) if U.same(1,N): w=d break print(w,G.distance(1,N))