import sys read=sys.stdin.buffer.read;readline=sys.stdin.buffer.readline;input=lambda:sys.stdin.readline().rstrip() import bisect,string,math,time,functools,random,fractions from bisect import* from heapq import heappush,heappop,heapify from collections import deque,defaultdict,Counter from itertools import permutations,combinations,groupby rep=range;R=range def I():return int(input()) def LI():return [int(i) for i in input().split()] def LI_():return [int(i)-1 for i in input().split()] def AI():return map(int,open(0).read().split()) def S_():return input() def IS():return input().split() def LS():return [i for i in input().split()] def NI(n):return [int(input()) for i in range(n)] def NI_(n):return [int(input())-1 for i in range(n)] def NLI(n):return [[int(i) for i in input().split()] for i in range(n)] def NLI_(n):return [[int(i)-1 for i in input().split()] for i in range(n)] def StoLI():return [ord(i)-97 for i in input()] def ItoS(n):return chr(n+97) def LtoS(ls):return ''.join([chr(i+97) for i in ls]) def RLI(n=8,a=1,b=10):return [random.randint(a,b)for i in range(n)] def RI(a=1,b=10):return random.randint(a,b) def INP(): N=10 n=random.randint(1,N) a=RLI(n,0,n-1) return n,a def Rtest(T): case,err=0,0 for i in range(T): inp=INP() a1=naive(*inp) a2=solve(*inp) if a1!=a2: print(inp) print('naive',a1) print('solve',a2) err+=1 case+=1 print('Tested',case,'case with',err,'errors') def GI(V,E,ls=None,Directed=False,index=1): org_inp=[];g=[[] for i in range(V)] FromStdin=True if ls==None else False for i in range(E): if FromStdin: inp=LI() org_inp.append(inp) else: inp=ls[i] if len(inp)==2:a,b=inp;c=1 else:a,b,c=inp if index==1:a-=1;b-=1 aa=(a,c);bb=(b,c);g[a].append(bb) if not Directed:g[b].append(aa) return g,org_inp def GGI(h,w,search=None,replacement_of_found='.',mp_def={'#':1,'.':0},boundary=1): #h,w,g,sg=GGI(h,w,search=['S','G'],replacement_of_found='.',mp_def={'#':1,'.':0},boundary=1) # sample usage mp=[boundary]*(w+2);found={} for i in R(h): s=input() for char in search: if char in s: found[char]=((i+1)*(w+2)+s.index(char)+1) mp_def[char]=mp_def[replacement_of_found] mp+=[boundary]+[mp_def[j] for j in s]+[boundary] mp+=[boundary]*(w+2) return h+2,w+2,mp,found def TI(n):return GI(n,n-1) def accum(ls): rt=[0] for i in ls:rt+=[rt[-1]+i] return rt def bit_combination(n,base=2): rt=[] for tb in R(base**n):s=[tb//(base**bt)%base for bt in R(n)];rt+=[s] return rt def gcd(x,y): if y==0:return x if x%y==0:return y while x%y!=0:x,y=y,x%y return y def YN(x):print(['NO','YES'][x]) def Yn(x):print(['No','Yes'][x]) def show(*inp,end='\n'): if show_flg:print(*inp,end=end) mo=10**9+7 #mo=998244353 inf=float('inf') FourNb=[(-1,0),(1,0),(0,1),(0,-1)];EightNb=[(-1,0),(1,0),(0,1),(0,-1),(1,1),(-1,-1),(1,-1),(-1,1)];compas=dict(zip('WENS',FourNb));cursol=dict(zip('LRUD',FourNb)) alp=[chr(ord('a')+i)for i in range(26)] #sys.setrecursionlimit(10**7) def gcj(c,x): print("Case #{0}:".format(c+1),x) ######################################################################################################################################################################## # Verified by # https://yukicoder.me/problems/no/979 # https://atcoder.jp/contests/abc152/tasks/abc152_e ## return prime factors of N as dictionary {prime p:power of p} ## within 2 sec for N = 2*10**20+7 def primeFactor(N): i,n=2,N ret={} d,sq=2,99 while i<=sq: k=0 while n%i==0: n,k,ret[i]=n//i,k+1,k+1 if k>0 or i==97: sq=int(n**(1/2)+0.5) if i<4: i=i*2-1 else: i,d=i+d,d^6 if n>1: ret[n]=1 return ret ## return divisors of n as list def divisor(n): div=[1] for i,j in primeFactor(n).items(): div=[(i**k)*d for d in div for k in range(j+1)] return div ## return the list of prime numbers in [2,N], using eratosthenes sieve ## around 800 ms for N = 10**6 by PyPy3 (7.3.0) @ AtCoder def PrimeNumSet(N): M=int(N**0.5) seachList=[i for i in range(2,N+1)] primes=[] while seachList: if seachList[0]>M: break primes.append(seachList[0]) tmp=seachList[0] seachList=[i for i in seachList if i%tmp!=0] return primes+seachList ## retrun LCM of numbers in list b ## within 2sec for no of B = 10*5 and Bi < 10**6 def LCM(b,mo=10**9+7): prs=PrimeNumSet(max(b)) M=dict(zip(prs,[0]*len(prs))) for i in b: dc=primeFactor(i) for j,k in dc.items(): M[j]=max(M[j],k) r=1 for j,k in M.items(): if k!=0: r*=pow(j,k,mo) r%=mo return r ## return (a,b,gcd(x,y)) s.t. a*x+b*y=gcd(x,y) def extgcd(x,y): if y==0: return 1,0 r0,r1,s0,s1 = x,y,1,0 while r1!= 0: r0,r1,s0,s1=r1,r0%r1,s1,s0-r0//r1*s1 return s0,(r0-s0*x)//y,x*s0+y*(r0-s0*x)//y ## return x,LCM(mods) s.t. x = rem_i (mod_i), x = -1 if such x doesn't exist ## verified by ABC193E ## https://atcoder.jp/contests/abc193/tasks/abc193_e def crt(rems,mods): n=len(rems) if n!=len(mods): return NotImplemented x,d=0,1 for r,m in zip(rems,mods): a,b,g=extgcd(d,m) x,d=(m*b*x+d*a*r)//g,d*(m//g) x%=d for r,m in zip(rems,mods): if r!=x%m: return -1,d return x,d ## returns the maximum integer rt s.t. rt*rt<=x ## verified by ABC191D ## https://atcoder.jp/contests/abc191/tasks/abc191_d def intsqrt(x): if x<0: return NotImplemented rt=int(x**0.5)-1 while (rt+1)**2<=x: rt+=1 return rt show_flg=False show_flg=True ans=0 mo=998244353 n=I() a=1 for i in range(n//2): a*=6 a%=mo print(a)