#include #include using namespace std; #if __has_include() #include using namespace atcoder; #endif using ll = long long; using ld = long double; using ull = long long; #define REP3(i, m, n) for (int i = (m); (i) < int(n); ++ (i)) #define ALL(x) begin(x), end(x) #define all(s) (s).begin(),(s).end() #define rep2(i, m, n) for (int i = (m); i < (n); ++i) #define rep(i, n) rep2(i, 0, n) #define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i) #define drep(i, n) drep2(i, n, 0) #define rever(vec) reverse(vec.begin(), vec.end()) #define sor(vec) sort(vec.begin(), vec.end()) #define fi first #define se second //#define P pair #define REP(i, n) for (int i = 0; i < (n); ++i) #define in scanner.read_int() const ll mod = 998244353; //const ll mod = 1000000007; const ll inf = 2000000000000000000ll; static const long double pi = 3.141592653589793; templatevoid vcin(vector &n){for(int i=0;i>n[i];} templatevoid vcout(vector &n){for(int i=0;i void chmax(T& t,const U& u){if(t void chmin(T& t,const U& u){if(t>u) t=u;} template void ifmin(T t,T u){if(t>u){cout<<-1< void ifmax(T t,T u){if(t>u){cout<<-1<auto make_vector(T x,int arg,Args ...args){if constexpr(sizeof...(args)==0)return vector(arg,x);else return vector(arg,make_vector(x,args...));} ll modPow(ll a, ll n, ll mod) { ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; } void gbjsmzmfuuvdf(){ ios::sync_with_stdio(false); std::cin.tie(nullptr); cout<< fixed << setprecision(20); } class Scanner { vector buffer; ssize_t n_written; ssize_t n_read; public: Scanner(): buffer(1024*1024) { do_read(); } int64_t read_int() { int64_t ret = 0, sgn = 1; int ch = current_char(); while (isspace(ch)) { ch = next_char(); } if (ch == '-') { sgn = -1; ch = next_char(); } for (; isdigit(ch); ch = next_char()) ret = (ret * 10) + (ch - '0'); return sgn * ret; } private: void do_read() { ssize_t r = read(0, &buffer[0], buffer.size()); if (r < 0) { throw runtime_error(strerror(errno)); } n_written = r; n_read = 0; } inline int next_char() { ++n_read; if (n_read == n_written) { do_read(); } return current_char(); } inline int current_char() { return (n_read == n_written) ? EOF : buffer[n_read]; } }; enum Mode { FAST = 1, NAIVE = -1, }; template struct FormalPowerSeries : std::vector { using std::vector::vector; using std::vector::size; using std::vector::resize; using F = FormalPowerSeries; F &operator+=(const F &g){ for(int i=0;i>=(const int d) { int n=(*this).size(); (*this).erase((*this).begin(),(*this).begin()+min(n, d)); (*this).resize(n); return *this; } F &operator=(const std::vector &v) { int n = (*this).size(); for(int i = 0; i < n; ++i) (*this)[i] = v[i]; return *this; } F operator-() const { F ret = *this; return ret * -1; } F &operator*=(const F &g) { if(mode==FAST) { int n=(*this).size(); auto tmp=atcoder::convolution(*this,g); int f=tmp.size(); (*this).resize(f); *this=tmp; return *this; } else{ int n = (*this).size(), m = g.size(); for(int i = n - 1; i >= 0; --i) { (*this)[i] *= g[0]; for(int j = 1; j < std::min(i + 1, m); j++) (*this)[i] += (*this)[i - j] * g[j]; } return *this; } } F &operator/=(const F &g) { if(mode == FAST){ int n = (*this).size(); (*this) = atcoder::convolution(*this, g.inv()); return *this; } else{ assert(g[0] != T(0)); T ig0 = g[0].inv(); int n = (*this).size(), m = g.size(); for(int i = 0; i < n; ++i) { for(int j = 1; j < std::min(i + 1, m); ++j) (*this)[i] -= (*this)[i - j] * g[j]; (*this)[i] *= ig0; } return *this; } } F &operator%=(const F &g) { return *this-=*this/g*g; } F operator*(const T &g) const { return F(*this)*=g;} F operator-(const T &g) const { return F(*this)-=g;} F operator*(const F &g) const { return F(*this)*=g;} F operator-(const F &g) const { return F(*this)-=g;} F operator+(const F &g) const { return F(*this)+=g;} F operator/(const F &g) const { return F(*this)/=g;} F operator%(const F &g) const { return F(*this)%=g;} F operator<<(const int d) const { return F(*this)<<=d;} F operator>>(const int d) const { return F(*this)>>=d;} void onemul(const int d,const T c){ int n=(*this).size(); for(int i=n-d-1;i>=0;i--){ (*this)[i+d]+=(*this)[i]*c; } } void onediv(const int d,const T c){ int n=(*this).size(); for(int i=0;i 0); F res{(*this)[0].inv()}; while(int(res.size()) < deg) { int m = res.size(); F f((*this).begin(), (*this).begin() + std::min(n, m * 2)), r(res); f.resize(m * 2), atcoder::internal::butterfly(f); r.resize(m * 2), atcoder::internal::butterfly(r); for(int i = 0; i < m * 2; ++i) f[i] *= r[i]; atcoder::internal::butterfly_inv(f); f.erase(f.begin(), f.begin() + m); f.resize(m * 2), atcoder::internal::butterfly(f); for(int i = 0; i < m * 2; ++i) f[i] *= r[i]; atcoder::internal::butterfly_inv(f); T iz = T(m * 2).inv(); iz *= -iz; for(int i = 0; i < m; ++i) f[i] *= iz; res.insert(res.end(), f.begin(), f.begin() + m); } res.resize(deg); return res; } F &diff_inplace() { int n = (*this).size(); for(int i = 1; i < n; ++i) (*this)[i - 1] = (*this)[i] * i; (*this)[n - 1] = 0; return *this; } F diff() const { F(*this).diff_inplace();} F &integral_inplace() { int n = (*this).size(), mod = T::mod(); std::vector inv(n); { inv[1] = 1; for(int i = 2; i < n; ++i) inv[i] = T(mod) - inv[mod % i] * (mod / i); } for(int i = n - 2; i >= 0; --i) (*this)[i + 1] = (*this)[i] * inv[i + 1]; (*this)[0] = 0; return *this; } F integral() const { return F(*this).integral_inplace(); } F &log_inplace() { int n = (*this).size(); assert(n and (*this)[0] == 1); F f_inv = (*this).inv(); (*this).diff_inplace(); (*this) *= f_inv; (*this).resize(n); (*this).integral_inplace(); return *this; } F log() const { return F(*this).log_inplace(); } F &deriv_inplace() { int n = (*this).size(); assert(n); for(int i = 2; i < n; ++i) (*this)[i] *= i; (*this).erase((*this).begin()); (*this).push_back(0); return *this; } F deriv() const { return F(*this).deriv_inplace(); } F &exp_inplace() { int n = (*this).size(); assert(n and (*this)[0] == 0); F g{1}; (*this)[0] = 1; F h_drv((*this).deriv()); for(int m = 1; m < n; m *= 2) { F f((*this).begin(), (*this).begin() + m); f.resize(2 * m), atcoder::internal::butterfly(f); auto mult_f = [&](F &p) { p.resize(2 * m); atcoder::internal::butterfly(p); for(int i = 0; i < 2 * m; ++i) p[i] *= f[i]; atcoder::internal::butterfly_inv(p); p /= 2 * m; }; if(m > 1) { F g_(g); g_.resize(2 * m), atcoder::internal::butterfly(g_); for(int i = 0; i < 2 * m; ++i) g_[i] *= g_[i] * f[i]; atcoder::internal::butterfly_inv(g_); T iz = T(-2 * m).inv(); g_ *= iz; g.insert(g.end(), g_.begin() + m / 2, g_.begin() + m); } F t((*this).begin(), (*this).begin() + m); t.deriv_inplace(); { F r{h_drv.begin(), h_drv.begin() + m - 1}; mult_f(r); for(int i = 0; i < m; ++i) t[i] -= r[i] + r[m + i]; } t.insert(t.begin(), t.back()); t.pop_back(); t *= g; F v((*this).begin() + m, (*this).begin() + std::min(n, 2 * m)); v.resize(m); t.insert(t.begin(), m - 1, 0); t.push_back(0); t.integral_inplace(); for(int i = 0; i < m; ++i) v[i] -= t[m + i]; mult_f(v); for(int i = 0; i < std::min(n - m, m); ++i) (*this)[m + i] = v[i]; } return *this; } F exp() const { return F(*this).exp_inplace(); } F &pow_inplace(long long k) { int n = (*this).size(), l = 0; assert(k >= 0); if(!k){ for(int i = 0; i < n; ++i) (*this)[i] = !i; return *this; } while(l < n and (*this)[l] == 0) ++l; if(l > (n - 1) / k or l == n) return *this = F(n); T c = (*this)[l]; (*this).erase((*this).begin(), (*this).begin() + l); (*this) /= c; (*this).log_inplace(); (*this).resize(n - l * k); (*this) *= k; (*this).exp_inplace(); (*this) *= c.pow(k); (*this).insert((*this).begin(), l * k, 0); return *this; } F pow(const long long k) const { return F(*this).pow_inplace(); } void spacemul(vector> g) { int n = (*this).size(); auto [d, c] = g.front(); if (d == 0) g.erase(g.begin()); else c = 0; for(int i=n-1;i>=0;i--){ (*this)[i] *= c; for (auto &[j, b] : g) { if (j > i) break; (*this)[i] += (*this)[i-j] * b; } } } void spacediv(vector> g) { int n = (*this).size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T ic = c.inv(); g.erase(g.begin()); for(int i=0;i i) break; (*this)[i] -= (*this)[i-j] * b; } (*this)[i] *= ic; } } }; using fps = FormalPowerSeries; using mint = modint998244353; constexpr ll MAX = 300000; ll fac[MAX],finv[MAX],inv[MAX]; void COMinit(){ fac[0]=fac[1]=1; finv[0]=finv[1]=1; inv[1]=1; for(int i=2;i=n-1&&n-1>=0){ return COM(n+k-1,n-1); } else{ return 0; } } template vector operator-(vector a) { for (auto&& e : a) e = -e; return a; } template vector& operator+=(vector& l, const vector& r) { l.resize(max(l.size(), r.size())); for (int i = 0; i < (int)r.size(); ++i) l[i] += r[i]; return l; } template vector operator+(vector l, const vector& r) { return l += r; } template vector& operator-=(vector& l, const vector& r) { l.resize(max(l.size(), r.size())); for (int i = 0; i < (int)r.size(); ++i) l[i] -= r[i]; return l; } template vector operator-(vector l, const vector& r) { return l -= r; } template vector operator*(const vector& l, const vector& r) { return convolution(l,r); } template vector& operator*=(vector& l, const vector& r) { return l = l * r; } template vector inverse(const vector& a) { assert(not a.empty() and not (a[0] == 0)); vector b{1 / a[0]}; while (b.size() < a.size()) { vector x(begin(a), begin(a) + min(a.size(), 2 * b.size())); x *= b * b; b.resize(2 * b.size()); for (auto i = b.size() / 2; i < min(x.size(), b.size()); ++i) b[i] = -x[i]; } return {begin(b), begin(b) + a.size()}; } template vector operator/(vector l, vector r) { if (l.size() < r.size()) return {}; reverse(begin(l), end(l)), reverse(begin(r), end(r)); int n = l.size() - r.size() + 1; l.resize(n), r.resize(n); l *= inverse(r); return {rend(l) - n, rend(l)}; } template vector& operator/=(vector& l, const vector& r) { return l = l / r; } template vector operator%(vector l, const vector& r) { if (l.size() < r.size()) return l; l -= l / r * r; return {begin(l), begin(l) + (r.size() - 1)}; } template vector& operator%=(vector& l, const vector& r) { return l = l % r; } template vector multipoint_evaluation(const vector& poly, const vector& x) { int n = x.size(); vector> t(2 * n); for (int i = 0; i < n; ++i) t[n + i] = {-x[i], 1}; for (int i = n; i-- > 1; ) t[i] = t[2 * i] * t[2 * i + 1]; t[1] = poly % t[1]; for (int i = 2; i < 2 * n; ++i) t[i] = t[i / 2] % t[i]; vector res(n); for (int i = 0; i < n; ++i) res[i] = t[n + i][0]; return res; } int main() { Scanner scanner; gbjsmzmfuuvdf(); COMinit(); ll n,m,k,p,q; n=in,m=in,k=in,p=in,q=in; vector a(n),b(m),c(k); for(int i=0;i X; for(int i=0;i1){ auto A=X.front(); X.pop(); auto B=X.front(); X.pop(); X.push(A*B); } fps s=X.front(); queue Y; for(int i=0;i1){ auto A=Y.front(); Y.pop(); auto B=Y.front(); Y.pop(); Y.push(A*B); } fps t=Y.front(); s.resize(p+1); t.resize(p+1); s=s.log_inplace(); t=t.log_inplace(); s*=-1; t*=-1; s[0]=m; t[0]=k; for(int i=1;i P(100000+2); for(int i=0;i Xi; vector Yi; for(int i=0;i<=p;i++){ Xi.push_back(mint(COM(p,i))*s[i]*t[p-i]); //cout< ans(100000+1); for(ll i=1;i<=100000;i++){ for(ll j=1;j<=100000;j++){ if(i*j>100000) break; ans[i*j]+=P[i]*Q[j]; } } for(int i=1;i<=100000;i++){ ans[i]+=ans[i-1]; } while(q--){ ll u; u=in; // u=q; cout<