#include using namespace std; using int128 = __int128_t; using int64 = long long; using int32 = int; using uint128 = __uint128_t; using uint64 = unsigned long long; using uint32 = unsigned int; #define ALL(obj) (obj).begin(),(obj).end() template using priority_queue_reverse = priority_queue,greater>; constexpr int64 MOD = 1'000'000'000LL + 7; //' constexpr int64 MOD2 = 998244353; constexpr int64 HIGHINF = 1'000'000'000'000'000'000LL; constexpr int64 LOWINF = 1'000'000'000'000'000LL; //' constexpr long double PI = 3.1415926535897932384626433L; template vector multivector(size_t N,T init){return vector(N,init);} template auto multivector(size_t N,T... t){return vector(N,multivector(t...));} template void corner(bool flg, T hoge) {if (flg) {cout << hoge << endl; exit(0);}} template ostream &operator<<(ostream &o, const map&obj) {o << "{"; for (auto &x : obj) o << " {" << x.first << " : " << x.second << "}" << ","; o << " }"; return o;} template ostream &operator<<(ostream &o, const set&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template ostream &operator<<(ostream &o, const multiset&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template ostream &operator<<(ostream &o, const vector&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;} template ostream &operator<<(ostream &o, const deque&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;} template ostream &operator<<(ostream &o, const pair&obj) {o << "{" << obj.first << ", " << obj.second << "}"; return o;} void print(void) {cout << endl;} template void print(Head&& head) {cout << head;print();} template void print(Head&& head, Tail&&... tail) {cout << head << " ";print(forward(tail)...);} template void chmax(T& a, const T b){a=max(a,b);} template void chmin(T& a, const T b){a=min(a,b);} vector split(const string &str, const char delemiter) {vector res;stringstream ss(str);string buffer; while( getline(ss, buffer, delemiter) ) res.push_back(buffer); return res;} inline constexpr int msb(int x) {return x?31-__builtin_clz(x):-1;} inline constexpr int64 ceil_div(const int64 a,const int64 b) {return (a+(b-1))/b;}// return ceil(a/b) void YN(bool flg) {cout << (flg ? "YES" : "NO") << endl;} void Yn(bool flg) {cout << (flg ? "Yes" : "No") << endl;} void yn(bool flg) {cout << (flg ? "yes" : "no") << endl;} /* * @title Graph * @docs md/graph/Graph.md */ template class Graph{ private: const size_t N,H,W; public: vector>> edges; Graph(const size_t N):H(-1),W(-1),N(N), edges(N) {} Graph(const size_t H, const size_t W):H(H),W(W),N(H*W), edges(H*W) {} inline void make_edge(size_t from, size_t to, T w) { edges[from].emplace_back(to,w); } //{from_y,from_x} -> {to_y,to_x} inline void make_edge(pair from, pair to, T w) { make_edge(from.first*W+from.second,to.first*W+to.second,w); } inline void make_bidirectional_edge(size_t from, size_t to, T w) { make_edge(from,to,w); make_edge(to,from,w); } inline void make_bidirectional_edge(pair from, pair to, T w) { make_edge(from.first*W+from.second,to.first*W+to.second,w); make_edge(to.first*W+to.second,from.first*W+from.second,w); } inline size_t size(){return N;} inline size_t idx(pair yx){return yx.first*W+yx.second;} }; /* * @title LazySegmentTree - 非再帰抽象化遅延評価セグメント木 * @docs md/segment/LazySegmentTree.md */ template class LazySegmentTree { using TypeNode = typename Operator::TypeNode; using TypeLazy = typename Operator::TypeLazy; size_t num; size_t length; size_t height; vector node; vector lazy; vector> range; void propagate(int k) { if(lazy[k] == Operator::unit_lazy) return; node[k] = Operator::func_merge(node[k],lazy[k],range[k].first,range[k].second); if(k < length) lazy[2*k+0] = Operator::func_lazy(lazy[2*k+0],lazy[k]); if(k < length) lazy[2*k+1] = Operator::func_lazy(lazy[2*k+1],lazy[k]); lazy[k] = Operator::unit_lazy; } public: //unitで初期化 LazySegmentTree(const size_t num) : num(num) { for (length = 1,height = 0; length <= num; length *= 2, height++); node.resize(2 * length, Operator::unit_node); lazy.resize(2 * length, Operator::unit_lazy); for (int i = 0; i < num; ++i) node[i + length] = Operator::unit_node; for (int i = length - 1; i >= 0; --i) node[i] = Operator::func_node(node[(i<<1)+0],node[(i<<1)+1]); range.resize(2 * length); for (int i = 0; i < length; ++i) range[i+length] = make_pair(i,i+1); for (int i = length - 1; i >= 0; --i) range[i] = make_pair(range[(i<<1)+0].first,range[(i<<1)+1].second); } // //同じinitで初期化 LazySegmentTree(const size_t num, const TypeNode init) : num(num) { for (length = 1,height = 0; length <= num; length *= 2, height++); node.resize(2 * length, Operator::unit_node); lazy.resize(2 * length, Operator::unit_lazy); for (int i = 0; i < num; ++i) node[i + length] = init; for (int i = length - 1; i >= 0; --i) node[i] = Operator::func_node(node[(i<<1)+0],node[(i<<1)+1]); range.resize(2 * length); for (int i = 0; i < length; ++i) range[i+length] = make_pair(i,i+1); for (int i = length - 1; i >= 0; --i) range[i] = make_pair(range[(i<<1)+0].first,range[(i<<1)+1].second); } //vectorで初期化 LazySegmentTree(const vector& vec) : num(vec.size()) { for (length = 1,height = 0; length <= vec.size(); length *= 2, height++); node.resize(2 * length, Operator::unit_node); lazy.resize(2 * length, Operator::unit_lazy); for (int i = 0; i < vec.size(); ++i) node[i + length] = vec[i]; for (int i = length - 1; i >= 0; --i) node[i] = Operator::func_node(node[(i<<1)+0],node[(i<<1)+1]); range.resize(2 * length); for (int i = 0; i < length; ++i) range[i+length] = make_pair(i,i+1); for (int i = length - 1; i >= 0; --i) range[i] = make_pair(range[(i<<1)+0].first,range[(i<<1)+1].second); } //update [a,b) void update(int a, int b, TypeLazy x) { int l = a + length, r = b + length - 1; for (int i = height; 0 < i; --i) propagate(l >> i), propagate(r >> i); for(r++; l < r; l >>=1, r >>=1) { if(l&1) lazy[l] = Operator::func_lazy(lazy[l],x), propagate(l),l++; if(r&1) --r,lazy[r] = Operator::func_lazy(lazy[r],x), propagate(r); } l = a + length, r = b + length - 1; while ((l>>=1),(r>>=1),l) { if(lazy[l] == Operator::unit_lazy) node[l] = Operator::func_node(Operator::func_merge(node[(l<<1)+0],lazy[(l<<1)+0],range[(l<<1)+0].first,range[(l<<1)+0].second),Operator::func_merge(node[(l<<1)+1],lazy[(l<<1)+1],range[(l<<1)+1].first,range[(l<<1)+1].second)); if(lazy[r] == Operator::unit_lazy) node[r] = Operator::func_node(Operator::func_merge(node[(r<<1)+0],lazy[(r<<1)+0],range[(r<<1)+0].first,range[(r<<1)+0].second),Operator::func_merge(node[(r<<1)+1],lazy[(r<<1)+1],range[(r<<1)+1].first,range[(r<<1)+1].second)); } } //get [a,b) TypeNode get(int a, int b) { int l = a + length, r = b + length - 1; for (int i = height; 0 < i; --i) propagate(l >> i), propagate(r >> i); TypeNode vl = Operator::unit_node, vr = Operator::unit_node; for(r++; l < r; l >>=1, r >>=1) { if(l&1) vl = Operator::func_node(vl,Operator::func_merge(node[l],lazy[l],range[l].first,range[l].second)),l++; if(r&1) r--,vr = Operator::func_node(Operator::func_merge(node[r],lazy[r],range[r].first,range[r].second),vr); } return Operator::func_node(vl,vr); } //return [0,length] int prefix_binary_search(TypeNode var) { int l = length, r = 2*length - 1; for (int i = height; 0 < i; --i) propagate(l >> i), propagate(r >> i); if(!Operator::func_check(node[1],var)) return num; TypeNode ret = Operator::unit_node; size_t idx = 2; for(; idx < 2*length; idx<<=1){ if(!Operator::func_check(Operator::func_node(ret,Operator::func_merge(node[idx],lazy[idx],range[idx].first,range[idx].second)),var)) { ret = Operator::func_node(ret,Operator::func_merge(node[idx],lazy[idx],range[idx].first,range[idx].second)); idx++; } } return min((idx>>1) - length,num); } //range[l,r) return [l,r] int binary_search(size_t l, size_t r, TypeNode var) { if (l < 0 || length <= l || r < 0 || length < r) return -1; for (int i = height; 0 < i; --i) propagate((l+length) >> i), propagate((r+length-1) >> i); TypeNode ret = Operator::unit_node; size_t off = l; for(size_t idx = l+length; idx < 2*length && off < r; ){ if(range[idx].second<=r && !Operator::func_check(Operator::func_node(ret,Operator::func_merge(node[idx],lazy[idx],range[idx].first,range[idx].second)),var)) { ret = Operator::func_node(ret,Operator::func_merge(node[idx],lazy[idx],range[idx].first,range[idx].second)); off = range[idx++].second; if(!(idx&1)) idx >>= 1; } else{ idx <<=1; } } return off; } void print(){ // cout << "node" << endl; // for(int i = 1,j = 1; i < 2*length; ++i) { // cout << node[i] << " "; // if(i==((1< struct NodeSumRangeAdd { using TypeNode = T; using TypeLazy = U; inline static constexpr TypeNode unit_node = 0; inline static constexpr TypeLazy unit_lazy = 0; inline static constexpr TypeNode func_node(TypeNode l,TypeNode r){return l+r;} inline static constexpr TypeLazy func_lazy(TypeLazy old_lazy,TypeLazy new_lazy){return old_lazy+new_lazy;} inline static constexpr TypeNode func_merge(TypeNode node,TypeLazy lazy,int l, int r){return node+lazy*(r-l);} inline static constexpr bool func_check(TypeNode nodeVal,TypeNode var){return var <= nodeVal;} // LazySegmentTree> Seg(N,0); }; /* * @title Tree - 木 * @docs md/graph/Tree.md */ template class TreeBuilder; template class Tree { private: using TypeEdge = typename Operator::TypeEdge; size_t num; size_t ord; Graph& g; friend TreeBuilder; Tree(Graph& graph): g(graph), num(graph.size()), depth(graph.size(),-1), order(graph.size()), edge_dist(graph.size()){ } //for make_depth void dfs(int curr, int prev){ for(const auto& e:g.edges[curr]){ const int& next = e.first; if(next==prev) continue; depth[next] = depth[curr] + 1; edge_dist[next] = Operator::func_edge_merge(edge_dist[curr],e.second); dfs(next,curr); order[ord++] = next; } } //for make_eulertour void dfs(int from){ eulertour.push_back(from); for(auto& e:child[from]){ int to = e.first; dfs(to); eulertour.push_back(from); } } void make_root(const int root) { depth[root] = 0; edge_dist[root] = Operator::unit_edge; ord = 0; dfs(root,-1); order[ord++] = root; reverse_copy(order.begin(),order.end(),back_inserter(reorder)); } void make_root() { ord = 0; for(int i=0;i depth[e.first]) parent[i] = e; } void make_ancestor() { ancestor.resize(num); for (size_t i = 0; i < num; ++i) ancestor[i][0] = (parent[i].first!=num?parent[i]:make_pair(i,Operator::unit_lca_edge)); for (size_t j = 1; j < Operator::bit; ++j) { for (size_t i = 0; i < num; ++i) { size_t k = ancestor[i][j - 1].first; ancestor[i][j] = Operator::func_lca_edge_merge(ancestor[k][j - 1],ancestor[i][j - 1]); } } } pair lca_impl(size_t l, size_t r) { if (depth[l] < depth[r]) swap(l, r); int diff = depth[l] - depth[r]; auto ancl = make_pair(l,Operator::unit_lca_edge); auto ancr = make_pair(r,Operator::unit_lca_edge); for (int j = 0; j < Operator::bit; ++j) { if (diff & (1 << j)) ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][j],ancl); } if(ancl.first==ancr.first) return ancl; for (int j = Operator::bit - 1; 0 <= j; --j) { if(ancestor[ancl.first][j].first!=ancestor[ancr.first][j].first) { ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][j],ancl); ancr = Operator::func_lca_edge_merge(ancestor[ancr.first][j],ancr); } } ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][0],ancl); ancr = Operator::func_lca_edge_merge(ancestor[ancr.first][0],ancr); return Operator::func_lca_edge_merge(ancl,ancr); } pair> diameter_impl() { Tree tree = Tree::builder(g).build(); size_t root = 0; { tree.make_root(0); } root = max_element(tree.edge_dist.begin(),tree.edge_dist.end()) - tree.edge_dist.begin(); { tree.make_root(root); } size_t leaf = max_element(tree.edge_dist.begin(),tree.edge_dist.end()) - tree.edge_dist.begin(); TypeEdge sz = tree.edge_dist[leaf]; vector st; { tree.make_parent(); while(leaf != root) { st.push_back(leaf); leaf = tree.parent[leaf].first; } st.push_back(root); } return make_pair(sz,st); } template vector rerooting_impl(vector rerootdp,vector rerootparent) { for(size_t pa:order) for(auto& e:child[pa]) rerootdp[pa] = Operator::func_reroot_dp(rerootdp[pa],rerootdp[e.first]); for(size_t pa:reorder) { if(depth[pa]) rerootdp[pa] = Operator::func_reroot_dp(rerootdp[pa],rerootparent[pa]); size_t m = child[pa].size(); for(int j = 0; j < m && depth[pa]; ++j){ size_t ch = child[pa][j].first; rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],rerootparent[pa]); } if(m <= 1) continue; vector l(m),r(m); for(int j = 0; j < m; ++j) { size_t ch = child[pa][j].first; l[j] = rerootdp[ch]; r[j] = rerootdp[ch]; } for(int j = 1; j+1 < m; ++j) l[j] = Operator::func_reroot_merge(l[j],l[j-1]); for(int j = m-2; 0 <=j; --j) r[j] = Operator::func_reroot_merge(r[j],r[j+1]); size_t chl = child[pa].front().first; size_t chr = child[pa].back().first; rerootparent[chl] = Operator::func_reroot_dp(rerootparent[chl],r[1]); rerootparent[chr] = Operator::func_reroot_dp(rerootparent[chr],l[m-2]); for(int j = 1; j+1 < m; ++j) { size_t ch = child[pa][j].first; rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],l[j-1]); rerootparent[ch] = Operator::func_reroot_dp(rerootparent[ch],r[j+1]); } } return rerootdp; } void make_eulertour() { dfs(reorder.front()); eulertour_range.resize(num); for(int i = 0; i < eulertour.size(); ++i) eulertour_range[eulertour[i]].second = i+1; for(int i = eulertour.size()-1; 0 <= i; --i) eulertour_range[eulertour[i]].first = i; } void make_heavy_light_decomposition(){ head.resize(num); hld.resize(num); iota(head.begin(),head.end(),0); for(size_t& pa:reorder) { pair maxi = {0,num}; for(auto& p:child[pa]) maxi = max(maxi,{subtree_size[p.first],p.first}); if(maxi.first) head[maxi.second] = head[pa]; } stack st_head,st_sub; size_t cnt = 0; //根に近い方から探索 for(size_t& root:reorder){ if(depth[root]) continue; //根をpush st_head.push(root); while(st_head.size()){ size_t h = st_head.top(); st_head.pop(); //部分木の根をpush st_sub.push(h); while (st_sub.size()){ size_t pa = st_sub.top(); st_sub.pop(); //部分木をカウントしていく hld[pa] = cnt++; //子を探索 for(auto& p:child[pa]) { //子のheadが親と同じなら、そのまま進む if(head[p.first]==head[pa]) st_sub.push(p.first); //そうじゃない場合は、そこから新しく部分木としてみなす else st_head.push(p.first); } } } } } //type 0: vertex, 1: edge vector> path_impl(size_t u,size_t v,int type = 0) { vector> path; while(1){ if(hld[u]>hld[v]) swap(u,v); if(head[u]!=head[v]) { path.push_back({hld[head[v]],hld[v]}); v=parent[head[v]].first; } else { path.push_back({hld[u],hld[v]}); break; } } reverse(path.begin(),path.end()); if(type) path.front().first++; return path; } size_t lca_idx_impl(size_t u,size_t v){ while(1){ if(hld[u]>hld[v]) swap(u,v); if(head[u]==head[v]) return u; v=parent[head[v]].first; } } vector head; public: vector depth; vector order; vector reorder; vector subtree_size; vector> parent; vector>> child; vector edge_dist; vector,Operator::bit>> ancestor; vector eulertour; vector> eulertour_range; vector hld; /** * O(N) builder */ static TreeBuilder builder(Graph& graph) { return TreeBuilder(graph);} /** * O(logN) after make_ancestor * return {lca,lca_dist} l and r must be connected */ pair lca(size_t l, size_t r) {return lca_impl(l,r);} /** * O(N) anytime * return {diameter size,diameter set} */ pair> diameter(void){return diameter_impl();} /** * O(N) after make_child */ template vector rerooting(const vector& rerootdp,const vector& rerootparent) {return rerooting_impl(rerootdp,rerootparent);} /** * O(logN) * lca(u,v)=u あるいは lca(u,v)=v のときは、根側から順方向パスを返してくれる */ vector> vertex_set_on_path(size_t u, size_t v) {return path_impl(u,v,0);} /** /** * O(logN) * lca(u,v)=u あるいは lca(u,v)=v のときは、根側から順方向パスを返してくれる */ vector> edge_set_on_path(size_t u, size_t v) {return path_impl(u,v,1);} /** * O(logN) ancestorのlcaより定数倍軽め。idxだけ */ size_t lca_idx(size_t u, size_t v) {return lca_idx_impl(u,v);} }; template class TreeBuilder { bool is_root_made =false; bool is_child_made =false; bool is_parent_made=false; bool is_subtree_size_made=false; public: using TypeEdge = typename Operator::TypeEdge; TreeBuilder(Graph& g):tree(g){} TreeBuilder& root(const int rt) { is_root_made=true; tree.make_root(rt); return *this;} TreeBuilder& root() { is_root_made=true; tree.make_root(); return *this;} TreeBuilder& child() { assert(is_root_made); is_child_made=true; tree.make_child(); return *this;} TreeBuilder& parent() { assert(is_root_made); is_parent_made=true; tree.make_parent(); return *this;} TreeBuilder& subtree_size() { assert(is_child_made); is_subtree_size_made=true; tree.make_subtree_size(); return *this;} TreeBuilder& ancestor() { assert(is_parent_made); tree.make_ancestor(); return *this;} TreeBuilder& eulertour() { assert(is_child_made); tree.make_eulertour(); return *this;} TreeBuilder& heavy_light_decomposition() { assert(is_subtree_size_made); assert(is_parent_made); tree.make_heavy_light_decomposition(); return *this;} Tree&& build() {return move(tree);} private: Tree tree; }; template struct TreeOperator{ using TypeEdge = T; inline static constexpr size_t bit = 20; inline static constexpr TypeEdge unit_edge = 0; inline static constexpr TypeEdge unit_lca_edge = 0; inline static constexpr TypeEdge func_edge_merge(const TypeEdge& parent,const TypeEdge& w){return parent+w;} inline static constexpr pair func_lca_edge_merge(const pair& l,const pair& r){return make_pair(l.first,l.second+r.second);} template inline static constexpr TypeReroot func_reroot_dp(const TypeReroot& l,const TypeReroot& r) {return {l.first+r.first+r.second,l.second+r.second};} template inline static constexpr TypeReroot func_reroot_merge(const TypeReroot& l,const TypeReroot& r) {return {l.first+r.first,l.second+r.second};} }; /** * @url * @est */ int main() { cin.tie(0);ios::sync_with_stdio(false); int N; cin >> N; Graph g(N); for(int i=0;i> u >> v; u--,v--; g.make_bidirectional_edge(u,v,1); } auto tree = Tree>::builder(g).root(0).parent().child().subtree_size().heavy_light_decomposition().build(); LazySegmentTree> seg(N); int Q; cin >> Q; int64 ans = 0; while(Q--) { int a,b; cin >> a >> b; a--,b--; auto vp = tree.vertex_set_on_path(a,b); for(auto& p:vp) { int l = p.first, r = p.second+1; int n = r-l; ans += seg.get(l,r)+n; seg.update(l,r,1); } } cout << ans << endl; return 0; }