#行列の乗算・累乗 mod = 10 ** 9 + 7 def mat_mul(a, b): n_a, m_a = len(a), len(a[0]) n_b, m_b = len(b), len(b[0]) res = [[0] * m_b for i in range(n_a)] for i in range(n_a): for k in range(m_a): for j in range(m_b): res[i][j] += a[i][k] * b[k][j] res[i][j] %= mod return res def mat_pow(a, k): if k == 1: return a n = len(a) res = [[0] * n for i in range(n)] for i in range(n): res[i][i] = 1 while k: if k & 1: res = mat_mul(res, a) a = mat_mul(a, a) k >>= 1 return res #入力 n, k, l = map(int, input().split()) #隣接行列の構築 G = [[0] * n for i in range(n)] for i in range(n): for j in range(1, l + 1): G[i][(i + j) % n] = 1 #行列累乗でパスの数を計算 G_ans = mat_pow(G, k) #各 i について答えを出力 for i in range(n): print(G_ans[0][i])