#行列の乗算・累乗

mod = 10 ** 9 + 7

def mat_mul(a, b):
    n_a, m_a = len(a), len(a[0])
    n_b, m_b = len(b), len(b[0])
    res = [[0] * m_b for i in range(n_a)]
    for i in range(n_a):
        for k in range(m_a):
            for j in range(m_b):
                res[i][j] += a[i][k] * b[k][j]
                res[i][j] %= mod
    return res

def mat_pow(a, k):
    if k == 1: return a
    n = len(a)
    res = [[0] * n for i in range(n)]
    for i in range(n):
        res[i][i] = 1
    while k:
        if k & 1:
            res = mat_mul(res, a)
        a = mat_mul(a, a)
        k >>= 1
    return res

#入力
n, k, l = map(int, input().split())

#隣接行列の構築
G = [[0] * n for i in range(n)]
for i in range(n):
    for j in range(1, l + 1):
        G[i][(i + j) % n] = 1

#行列累乗でパスの数を計算
G_ans = mat_pow(G, k)

#各 i について答えを出力
for i in range(n):
    print(G_ans[0][i])