import collections import heapq class Dijkstra: def __init__(self): self.e = collections.defaultdict(list) def add(self, u, v, d, directed=False): """ #0-indexedでなくてもよいことに注意 #u = from, v = to, d = cost #directed = Trueなら、有向グラフである """ if directed is False: self.e[u].append([v, d]) self.e[v].append([u, d]) else: self.e[u].append([v, d]) def delete(self, u, v): self.e[u] = [_ for _ in self.e[u] if _[0] != v] self.e[v] = [_ for _ in self.e[v] if _[0] != u] def search(self, s): """ :param s: 始点 :return: 始点から各点までの最短経路 """ d = collections.defaultdict(lambda: float('inf')) d[s] = 0 q = [] heapq.heappush(q, (0, s)) v = collections.defaultdict(bool) while len(q): k, u = heapq.heappop(q) if v[u]: continue v[u] = True for uv, ud in self.e[u]: if v[uv]: continue vd = k + ud if d[uv] > vd: d[uv] = vd heapq.heappush(q, (vd, uv)) return d N, M = map(int, input().split()) ABC = [list(map(int, input().split())) for i in range(M)] graph = Dijkstra()#チケット使用しない(使用後をマイナスで表現) for a,b,c in ABC: graph.add(a, b, c) graph.add(a, -b, 0, True) graph.add(b, -a, 0, True) graph.add(-a, -b, c) g = graph.search(1) print(0)#1から1は0、↓の計算でやると別な値が入るため for i in range(2,N+1): print(g[i]+g[-i])