// ---------- begin ModInt ---------- mod modint { #[allow(dead_code)] pub struct Mod; impl ConstantModulo for Mod { const MOD: u32 = 1_000_000_007; } #[allow(dead_code)] pub struct StaticMod; static mut STATIC_MOD: u32 = 0; impl Modulo for StaticMod { fn modulo() -> u32 { unsafe { STATIC_MOD } } } #[allow(dead_code)] impl StaticMod { pub fn set_modulo(p: u32) { unsafe { STATIC_MOD = p; } } } use std::marker::*; use std::ops::*; pub trait Modulo { fn modulo() -> u32; } pub trait ConstantModulo { const MOD: u32; } impl Modulo for T where T: ConstantModulo, { fn modulo() -> u32 { T::MOD } } pub struct ModInt(pub u32, PhantomData); impl Clone for ModInt { fn clone(&self) -> Self { ModInt::new_unchecked(self.0) } } impl Copy for ModInt {} impl Add for ModInt { type Output = ModInt; fn add(self, rhs: Self) -> Self::Output { let mut d = self.0 + rhs.0; if d >= T::modulo() { d -= T::modulo(); } ModInt::new_unchecked(d) } } impl AddAssign for ModInt { fn add_assign(&mut self, rhs: Self) { *self = *self + rhs; } } impl Sub for ModInt { type Output = ModInt; fn sub(self, rhs: Self) -> Self::Output { let mut d = T::modulo() + self.0 - rhs.0; if d >= T::modulo() { d -= T::modulo(); } ModInt::new_unchecked(d) } } impl SubAssign for ModInt { fn sub_assign(&mut self, rhs: Self) { *self = *self - rhs; } } impl Mul for ModInt { type Output = ModInt; fn mul(self, rhs: Self) -> Self::Output { let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64; ModInt::new_unchecked(v as u32) } } impl MulAssign for ModInt { fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs; } } impl Neg for ModInt { type Output = ModInt; fn neg(self) -> Self::Output { if self.0 == 0 { Self::zero() } else { Self::new_unchecked(T::modulo() - self.0) } } } impl std::fmt::Display for ModInt { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl std::fmt::Debug for ModInt { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl std::str::FromStr for ModInt { type Err = std::num::ParseIntError; fn from_str(s: &str) -> Result { let val = s.parse::()?; Ok(ModInt::new(val)) } } impl From for ModInt { fn from(val: usize) -> ModInt { ModInt::new_unchecked((val % T::modulo() as usize) as u32) } } impl From for ModInt { fn from(val: u64) -> ModInt { ModInt::new_unchecked((val % T::modulo() as u64) as u32) } } impl From for ModInt { fn from(val: i64) -> ModInt { let m = T::modulo() as i64; ModInt::new((val % m + m) as u32) } } #[allow(dead_code)] impl ModInt { pub fn new_unchecked(d: u32) -> Self { ModInt(d, PhantomData) } pub fn zero() -> Self { ModInt::new_unchecked(0) } pub fn one() -> Self { ModInt::new_unchecked(1) } pub fn is_zero(&self) -> bool { self.0 == 0 } } #[allow(dead_code)] impl ModInt { pub fn new(d: u32) -> Self { ModInt::new_unchecked(d % T::modulo()) } pub fn pow(&self, mut n: u64) -> Self { let mut t = Self::one(); let mut s = *self; while n > 0 { if n & 1 == 1 { t *= s; } s *= s; n >>= 1; } t } pub fn inv(&self) -> Self { assert!(self.0 != 0); self.pow(T::modulo() as u64 - 2) } } } // ---------- end ModInt ---------- // ---------- begin Precalc ---------- mod precalc { use super::modint::*; #[allow(dead_code)] pub struct Precalc { inv: Vec>, fact: Vec>, ifact: Vec>, } #[allow(dead_code)] impl Precalc { pub fn new(n: usize) -> Precalc { let mut inv = vec![ModInt::one(); n + 1]; let mut fact = vec![ModInt::one(); n + 1]; let mut ifact = vec![ModInt::one(); n + 1]; for i in 2..(n + 1) { fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32); } ifact[n] = fact[n].inv(); if n > 0 { inv[n] = ifact[n] * fact[n - 1]; } for i in (1..n).rev() { ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32); inv[i] = ifact[i] * fact[i - 1]; } Precalc { inv: inv, fact: fact, ifact: ifact, } } pub fn inv(&self, n: usize) -> ModInt { assert!(n > 0); self.inv[n] } pub fn fact(&self, n: usize) -> ModInt { self.fact[n] } pub fn ifact(&self, n: usize) -> ModInt { self.ifact[n] } pub fn perm(&self, n: usize, k: usize) -> ModInt { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[n - k] } pub fn comb(&self, n: usize, k: usize) -> ModInt { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[k] * self.ifact[n - k] } } } // ---------- end Precalc ---------- use modint::*; type M = ModInt; // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- // 適当に座標圧縮 // dp[区間] = (確率密度関数) // として頑張る #[derive(Clone)] pub struct Poly(Vec); use std::ops::*; impl Add for Poly { type Output = Self; fn add(self, rhs: Self) -> Self::Output { &self + &rhs } } impl Add<&Poly> for Poly { type Output = Self; fn add(self, rhs: &Self) -> Self::Output { &self + rhs } } impl Add for &Poly { type Output = Poly; fn add(self, rhs: Poly) -> Self::Output { self + &rhs } } impl Add for &Poly { type Output = Poly; fn add(self, rhs: Self) -> Self::Output { let mut c = vec![M::zero(); self.0.len().max(rhs.0.len())]; c.iter_mut().zip(&self.0).for_each(|p| *p.0 += *p.1); c.iter_mut().zip(&rhs.0).for_each(|p| *p.0 += *p.1); Poly::new(c) } } impl AddAssign<&Poly> for Poly { fn add_assign(&mut self, rhs: &Self) { if self.0.len() < rhs.0.len() { self.0.resize(rhs.0.len(), M::zero()); } self.0.iter_mut().zip(rhs.0.iter()).for_each(|p| *p.0 += *p.1); self.fix(); } } impl Sub for Poly { type Output = Self; fn sub(self, rhs: Self) -> Self::Output { &self - &rhs } } impl Sub<&Poly> for Poly { type Output = Self; fn sub(self, rhs: &Self) -> Self::Output { &self - rhs } } impl Sub for &Poly { type Output = Poly; fn sub(self, rhs: Poly) -> Self::Output { self - &rhs } } impl Sub for &Poly { type Output = Poly; fn sub(self, rhs: Self) -> Self::Output { let mut c = vec![M::zero(); self.0.len().max(rhs.0.len())]; c.iter_mut().zip(&self.0).for_each(|p| *p.0 += *p.1); c.iter_mut().zip(&rhs.0).for_each(|p| *p.0 -= *p.1); Poly::new(c) } } impl SubAssign<&Poly> for Poly { fn sub_assign(&mut self, rhs: &Self) { if self.0.len() < rhs.0.len() { self.0.resize(rhs.0.len(), M::zero()); } self.0.iter_mut().zip(rhs.0.iter()).for_each(|p| *p.0 -= *p.1); self.fix(); } } impl Mul for Poly { type Output = Self; fn mul(self, rhs: Self) -> Self::Output { &self * &rhs } } impl Mul<&Poly> for Poly { type Output = Self; fn mul(self, rhs: &Self) -> Self::Output { &self * rhs } } impl Mul for &Poly { type Output = Poly; fn mul(self, rhs: Poly) -> Self::Output { self * &rhs } } impl Mul for &Poly { type Output = Poly; fn mul(self, rhs: Self) -> Self::Output { if self.is_zero() || rhs.is_zero() { return Poly::zero(); } let mut c = vec![M::zero(); self.0.len() + rhs.0.len() - 1]; for (i, a) in self.0.iter().enumerate() { for (c, b) in c[i..].iter_mut().zip(rhs.0.iter()) { *c += *a * *b; } } Poly::new(c) } } impl MulAssign<&Poly> for Poly { fn mul_assign(&mut self, rhs: &Self) { *self = &*self * rhs; } } impl Poly { fn from(a: &[M]) -> Self { Poly::new(Vec::from(a)) } fn new(a: Vec) -> Self { let mut res = Poly(a); res.fix(); res } fn zero() -> Self { Poly::new(vec![]) } fn one() -> Self { Poly::new(vec![M::one()]) } fn fix(&mut self) { while self.0.last().map_or(false, |a| a.is_zero()) { self.0.pop(); } } fn is_zero(&self) -> bool { self.0.is_empty() } fn integral(&self) -> Self { if self.is_zero() { return Poly::zero(); } let mut inv = vec![M::one(); self.0.len() + 1]; for i in 1..inv.len() { inv[i] = M::from(i) * inv[i - 1]; } let mut ifact = inv[self.0.len()].inv(); for i in (1..inv.len()).rev() { inv[i] = inv[i - 1] * ifact; ifact *= M::from(i); } let mut c = vec![M::zero(); self.0.len() + 1]; for (i, a) in self.0.iter().enumerate() { c[i + 1] = inv[i + 1] * *a; } Poly::new(c) } fn eval(&self, x: M) -> M { self.0.iter().rfold(M::zero(), |s, a| s * x + *a) } } fn run() { input! { n: usize, p: [(usize, usize); n], } let mut z = vec![]; z.extend(p.iter().map(|p| p.0)); z.extend(p.iter().map(|p| p.1)); z.sort(); z.dedup(); let mut dp = vec![Poly::zero(); z.len() - 1]; let ini = Poly::from(&[M::from(p[0].1 - p[0].0).inv()]); for (i, z) in z.windows(2).enumerate() { if p[0].0 <= z[0] && z[1] <= p[0].1 { dp[i] = ini.clone(); } } for (p, &(l, r)) in p[1..].iter().enumerate() { let inv = M::from(r - l).inv(); let l = z.binary_search(&l).unwrap(); let r = z.binary_search(&r).unwrap(); let mut all = M::zero(); for (z, dp) in z.windows(2).zip(&dp) { let f = dp.integral(); all += f.eval(M::from(z[1])) - f.eval(M::from(z[0])); } let all = all; let mut sum = M::zero(); for i in 0..dp.len() { let f = dp[i].integral(); dp[i] = Poly::zero(); if l <= i && i < r { let mut g = f.clone(); g -= &Poly::from(&[f.eval(M::from(z[i]))]); g += &Poly::from(&[sum]); if p % 2 == 1 { g = Poly::from(&[all]) - g; } g *= &Poly::from(&[inv]); dp[i] = g; } sum += f.eval(M::from(z[i + 1])) - f.eval(M::from(z[i])); } } let mut ans = M::zero(); for (i, z) in z.windows(2).enumerate() { let f = dp[i].integral(); ans += f.eval(M::from(z[1])) - f.eval(M::from(z[0])); } println!("{}", ans); } fn main() { run(); }