import std.conv, std.functional, std.range, std.stdio, std.string; import std.algorithm, std.array, std.bigint, std.bitmanip, std.complex, std.container, std.math, std.mathspecial, std.numeric, std.regex, std.typecons; import core.bitop; class EOFException : Throwable { this() { super("EOF"); } } string[] tokens; string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; } int readInt() { return readToken.to!int; } long readLong() { return readToken.to!long; } real readReal() { return readToken.to!real; } bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } } bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } } int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; } int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); } int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); } struct ModInt(int M_) { import std.conv : to; alias M = M_; int x; this(ModInt a) { x = a.x; } this(long a) { x = cast(int)(a % M); if (x < 0) x += M; } ref ModInt opAssign(long a) { return (this = ModInt(a)); } ref ModInt opOpAssign(string op)(ModInt a) { static if (op == "+") { x += a.x; if (x >= M) x -= M; } else static if (op == "-") { x -= a.x; if (x < 0) x += M; } else static if (op == "*") { x = cast(int)((cast(long)(x) * a.x) % M); } else static if (op == "/") { this *= a.inv(); } else static assert(false); return this; } ref ModInt opOpAssign(string op)(long a) { static if (op == "^^") { if (a < 0) return (this = inv()^^(-a)); ModInt t2 = this, te = ModInt(1); for (long e = a; e > 0; e >>= 1) { if (e & 1) te *= t2; t2 *= t2; } x = cast(int)(te.x); return this; } else return mixin("this " ~ op ~ "= ModInt(a)"); } ModInt inv() const { int a = x, b = M, y = 1, z = 0, t; for (; ; ) { t = a / b; a -= t * b; if (a == 0) { assert(b == 1 || b == -1); return ModInt(b * z); } y -= t * z; t = b / a; b -= t * a; if (b == 0) { assert(a == 1 || a == -1); return ModInt(a * y); } z -= t * y; } } ModInt opUnary(string op: "-")() const { return ModInt(-x); } ModInt opBinary(string op, T)(T a) const { return mixin("ModInt(this) " ~ op ~ "= a"); } ModInt opBinaryRight(string op)(long a) const { return mixin("ModInt(a) " ~ op ~ "= this"); } bool opCast(T: bool)() const { return (x != 0); } string toString() const { return x.to!string; } } enum MO = 998244353; alias Mint = ModInt!MO; void main() { try { for (; ; ) { const N = readInt(); auto A = new Mint[N]; foreach (i; 0 .. N) { A[i] = readInt(); } A.sort!"a.x < b.x"; Mint ans; for (int i, j; i < N; i = j) { for (j = i; j < N && A[i] == A[j]; ++j) {} const d = j - i; /* (residue at sqrt(-1) A[i]) = [(x - sqrt(-1) A[i])^-1] f(x) = [y^(d-1)] y^d f(y + sqrt(-1) A[i]) = (y + sqrt(-1) (2 A[i]))^-1 \prod_{k!=i} (y + sqrt(-1) (A[i] - A[k]))^-1 (y + sqrt(-1) (A[i] + A[k]))^-1 */ auto fs = new Mint[d]; fs[0] = 1; /* (y - b)^-1 = -b^-1 y^0 - b^-2 y^1 - b^-3 y^2 - ... */ void mul(Mint b) { const invB = b.inv; fs[0] = -fs[0] * invB; foreach (h; 1 .. d) { fs[h] = (fs[h - 1] - fs[h]) * invB; } } foreach (k; 0 .. N) { // x - sqrt(-1) A[k] if (A[i] != A[k]) { mul(A[i] - A[k]); } // x + sqrt(-1) A[k] mul(A[i] + A[k]); } /* [y^(d-1)] \prod (y + sqrt(-1) b)^-1 = sqrt(-1)^(2N-d) [y^(d-1)] \prod (sqrt(-1) y - b)^-1 = sqrt(-1)^(2N-1) [y^(d-1)] \prod (y - b)^-1 multiply by (2 pi sqrt(-1)) (-1)^N [y^(d-1)] \prod (y - b)^-1 */ ans += 2 * (-1)^^(N & 1) * fs[d - 1]; } writeln(ans); } } catch (EOFException e) { } }