#define LOCAL #include using namespace std; #pragma region Macros typedef long long ll; typedef __int128_t i128; typedef unsigned int uint; typedef unsigned long long ull; #define ALL(x) (x).begin(), (x).end() template istream& operator>>(istream& is, vector& v) { for (T& x : v) is >> x; return is; } template ostream& operator<<(ostream& os, const vector& v) { for (int i = 0; i < (int)v.size(); i++) { os << v[i] << (i + 1 == (int)v.size() ? "" : " "); } return os; } template ostream& operator<<(ostream& os, const pair& p) { os << '(' << p.first << ',' << p.second << ')'; return os; } template ostream& operator<<(ostream& os, const tuple& t) { os << '(' << get<0>(t) << ',' << get<1>(t) << ',' << get<2>(t) << ')'; return os; } template ostream& operator<<(ostream& os, const tuple& t) { os << '(' << get<0>(t) << ',' << get<1>(t) << ',' << get<2>(t) << ',' << get<3>(t) << ')'; return os; } template ostream& operator<<(ostream& os, const map& m) { os << '{'; for (auto itr = m.begin(); itr != m.end();) { os << '(' << itr->first << ',' << itr->second << ')'; if (++itr != m.end()) os << ','; } os << '}'; return os; } template ostream& operator<<(ostream& os, const unordered_map& m) { os << '{'; for (auto itr = m.begin(); itr != m.end();) { os << '(' << itr->first << ',' << itr->second << ')'; if (++itr != m.end()) os << ','; } os << '}'; return os; } template ostream& operator<<(ostream& os, const set& s) { os << '{'; for (auto itr = s.begin(); itr != s.end();) { os << *itr; if (++itr != s.end()) os << ','; } os << '}'; return os; } template ostream& operator<<(ostream& os, const multiset& s) { os << '{'; for (auto itr = s.begin(); itr != s.end();) { os << *itr; if (++itr != s.end()) os << ','; } os << '}'; return os; } template ostream& operator<<(ostream& os, const unordered_set& s) { os << '{'; for (auto itr = s.begin(); itr != s.end();) { os << *itr; if (++itr != s.end()) os << ','; } os << '}'; return os; } template ostream& operator<<(ostream& os, const deque& v) { for (int i = 0; i < (int)v.size(); i++) { os << v[i] << (i + 1 == (int)v.size() ? "" : " "); } return os; } void debug_out() { cerr << '\n'; } template void debug_out(Head&& head, Tail&&... tail) { cerr << head; if (sizeof...(Tail) > 0) cerr << ", "; debug_out(move(tail)...); } #ifdef LOCAL #define debug(...) \ cerr << " "; \ cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n'; \ cerr << " "; \ debug_out(__VA_ARGS__) #else #define debug(...) 42 #endif template T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; } template T lcm(T x, T y) { return x / gcd(x, y) * y; } template inline bool chmin(T1& a, T2 b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T1& a, T2 b) { if (a < b) { a = b; return true; } return false; } #pragma endregion /** * @brief modint * @docs docs/modulo/modint.md */ template class modint { using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; public: u32 v; constexpr modint(const i64 x = 0) noexcept : v(x < 0 ? mod - 1 - (-(x + 1) % mod) : x % mod) {} constexpr u32& value() noexcept { return v; } constexpr const u32& value() const noexcept { return v; } constexpr modint operator+(const modint& rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint& rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint& rhs) const noexcept { return modint(*this) *= rhs; } constexpr modint operator/(const modint& rhs) const noexcept { return modint(*this) /= rhs; } constexpr modint& operator+=(const modint& rhs) noexcept { v += rhs.v; if (v >= mod) v -= mod; return *this; } constexpr modint& operator-=(const modint& rhs) noexcept { if (v < rhs.v) v += mod; v -= rhs.v; return *this; } constexpr modint& operator*=(const modint& rhs) noexcept { v = (u64)v * rhs.v % mod; return *this; } constexpr modint& operator/=(const modint& rhs) noexcept { return *this *= rhs.pow(mod - 2); } constexpr modint pow(u64 exp) const noexcept { modint self(*this), res(1); while (exp > 0) { if (exp & 1) res *= self; self *= self; exp >>= 1; } return res; } constexpr modint& operator++() noexcept { if (++v == mod) v = 0; return *this; } constexpr modint& operator--() noexcept { if (v == 0) v = mod; return --v, *this; } constexpr modint operator++(int) noexcept { modint t = *this; return ++*this, t; } constexpr modint operator--(int) noexcept { modint t = *this; return --*this, t; } constexpr modint operator-() const noexcept { return modint(mod - v); } template friend constexpr modint operator+(T x, modint y) noexcept { return modint(x) + y; } template friend constexpr modint operator-(T x, modint y) noexcept { return modint(x) - y; } template friend constexpr modint operator*(T x, modint y) noexcept { return modint(x) * y; } template friend constexpr modint operator/(T x, modint y) noexcept { return modint(x) / y; } constexpr bool operator==(const modint& rhs) const noexcept { return v == rhs.v; } constexpr bool operator!=(const modint& rhs) const noexcept { return v != rhs.v; } constexpr bool operator!() const noexcept { return !v; } friend istream& operator>>(istream& s, modint& rhs) noexcept { i64 v; rhs = modint{(s >> v, v)}; return s; } friend ostream& operator<<(ostream& s, const modint& rhs) noexcept { return s << rhs.v; } }; /** * @brief Number Theoretic Transform * @docs docs/convolution/NumberTheoreticTransform.md */ template struct NumberTheoreticTransform { using Mint = modint; vector roots; vector rev; int base, max_base; Mint root; NumberTheoreticTransform() : base(1), rev{0, 1}, roots{Mint(0), Mint(1)} { int tmp = mod - 1; for (max_base = 0; tmp % 2 == 0; max_base++) tmp >>= 1; root = 2; while (root.pow((mod - 1) >> 1) == 1) root++; root = root.pow((mod - 1) >> max_base); } void ensure_base(int nbase) { if (nbase <= base) return; rev.resize(1 << nbase); for (int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (nbase - 1)); } roots.resize(1 << nbase); for (; base < nbase; base++) { Mint z = root.pow(1 << (max_base - 1 - base)); for (int i = 1 << (base - 1); i < (1 << base); i++) { roots[i << 1] = roots[i]; roots[i << 1 | 1] = roots[i] * z; } } } void ntt(vector& a) { const int n = a.size(); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for (int i = 0; i < n; i++) { if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for (int k = 1; k < n; k <<= 1) { for (int i = 0; i < n; i += (k << 1)) { for (int j = 0; j < k; j++) { Mint z = a[i + j + k] * roots[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } vector multiply(vector a, vector b) { int need = a.size() + b.size() - 1; int nbase = 1; while ((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; a.resize(sz, Mint(0)); b.resize(sz, Mint(0)); ntt(a); ntt(b); Mint inv_sz = 1 / Mint(sz); for (int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz; reverse(a.begin() + 1, a.end()); ntt(a); a.resize(need); return a; } vector multiply(vector a, vector b) { vector A(a.size()), B(b.size()); for (int i = 0; i < a.size(); i++) A[i] = Mint(a[i]); for (int i = 0; i < b.size(); i++) B[i] = Mint(b[i]); vector C = multiply(A, B); vector res(C.size()); for (int i = 0; i < C.size(); i++) res[i] = C[i].v; return res; } }; const int INF = 1e9; const long long IINF = 1e18; const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; const char dir[4] = {'D', 'R', 'U', 'L'}; // const long long MOD = 1000000007; const long long MOD = 998244353; // https://ei1333.github.io/luzhiled/snippets/math/mod-log.html int64_t mod_log(int64_t a, int64_t b, int64_t p) { int64_t g = 1; for (int64_t i = p; i; i /= 2) (g *= a) %= p; g = __gcd(g, p); int64_t t = 1, c = 0; for (; t % g; c++) { if (t == b) return c; (t *= a) %= p; } if (b % g) return -1; t /= g; b /= g; int64_t n = p / g, h = 0, gs = 1; for (; h * h < n; h++) (gs *= a) %= n; unordered_map bs; for (int64_t s = 0, e = b; s < h; bs[e] = ++s) { (e *= a) %= n; } for (int64_t s = 0, e = t; s < n;) { (e *= gs) %= n; s += h; if (bs.count(e)) return c + s - bs[e]; } return -1; } /** * @brief 繰り返し2乗法 */ long long modpow(long long x, long long n, long long mod) { long long res = 1; while (n > 0) { if (n & 1LL) res = res * x % mod; x = x * x % mod; n >>= 1LL; } return res; } long long modinv(long long x, long long p) { return modpow(x, p - 2, p); } using mint = modint; const int root = 3, MAX_A = 100010; int main() { cin.tie(0); ios::sync_with_stdio(false); mint iroot = modpow(root, mod_log(root, MOD - 1, MOD) / 2, MOD); int N; cin >> N; vector A(N), cnt(MAX_A, 0); for (int& x : A) { cin >> x; cnt[x]++; } for (int i = 0; i < N; i++) A.emplace_back(-A[i]); NumberTheoreticTransform NTT; mint ans = 0; for (int i = 0; i < MAX_A; i++) { if (!cnt[i]) continue; vector f(N + 1, 0); f[0] = 1; for (int& z : A) { if (z == i) continue; mint inv = mint(1) / (iroot * (z - i)); vector g(N + 1); g[0] = -inv; for (int i = 1; i <= N; i++) g[i] = g[i - 1] * inv; f = NTT.multiply(f, g); while (f.size() > N + 1) f.pop_back(); } ans += f[cnt[i] - 1] * 2 * iroot; } cout << ans << '\n'; return 0; }