#line 1 "other-workspace\\b.cc" // #undef _GLIBCXX_DEBUG // #define NDEBUG #include #line 2 "Library\\lib\\alias" /** * @file alias * @brief Alias */ #line 13 "Library\\lib\\alias" #line 2 "Library\\lib\\bit" #if __cplusplus > 201703L #include #else #ifndef _GLIBCXX_BIT #define _GLIBCXX_BIT 1 #include #include namespace std { template constexpr int __countl_zero(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0) return _Nd; constexpr auto _Nd_ull = numeric_limits::digits; constexpr auto _Nd_ul = numeric_limits::digits; constexpr auto _Nd_u = numeric_limits::digits; if _GLIBCXX17_CONSTEXPR(_Nd <= _Nd_u) { constexpr int __diff = _Nd_u - _Nd; return __builtin_clz(__x) - __diff; } else if _GLIBCXX17_CONSTEXPR(_Nd <= _Nd_ul) { constexpr int __diff = _Nd_ul - _Nd; return __builtin_clzl(__x) - __diff; } else if _GLIBCXX17_CONSTEXPR(_Nd <= _Nd_ull) { constexpr int __diff = _Nd_ull - _Nd; return __builtin_clzll(__x) - __diff; } else // (_Nd > _Nd_ull) { static_assert(_Nd <= (2 * _Nd_ull), "Maximum supported integer size is 128-bit"); unsigned long long __high = __x >> _Nd_ull; if (__high != 0) { constexpr int __diff = (2 * _Nd_ull) - _Nd; return __builtin_clzll(__high) - __diff; } constexpr auto __max_ull = numeric_limits::max(); unsigned long long __low = __x & __max_ull; return (_Nd - _Nd_ull) + __builtin_clzll(__low); } } template constexpr int __countr_zero(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0) return _Nd; constexpr auto _Nd_ull = numeric_limits::digits; constexpr auto _Nd_ul = numeric_limits::digits; constexpr auto _Nd_u = numeric_limits::digits; if _GLIBCXX17_CONSTEXPR(_Nd <= _Nd_u) return __builtin_ctz(__x); else if _GLIBCXX17_CONSTEXPR(_Nd <= _Nd_ul) return __builtin_ctzl(__x); else if _GLIBCXX17_CONSTEXPR(_Nd <= _Nd_ull) return __builtin_ctzll(__x); else // (_Nd > _Nd_ull) { static_assert(_Nd <= (2 * _Nd_ull), "Maximum supported integer size is 128-bit"); constexpr auto __max_ull = numeric_limits::max(); unsigned long long __low = __x & __max_ull; if (__low != 0) return __builtin_ctzll(__low); unsigned long long __high = __x >> _Nd_ull; return __builtin_ctzll(__high) + _Nd_ull; } } template constexpr int __popcount(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0) return 0; constexpr auto _Nd_ull = numeric_limits::digits; constexpr auto _Nd_ul = numeric_limits::digits; constexpr auto _Nd_u = numeric_limits::digits; if _GLIBCXX17_CONSTEXPR(_Nd <= _Nd_u) return __builtin_popcount(__x); else if _GLIBCXX17_CONSTEXPR(_Nd <= _Nd_ul) return __builtin_popcountl(__x); else if _GLIBCXX17_CONSTEXPR(_Nd <= _Nd_ull) return __builtin_popcountll(__x); else // (_Nd > _Nd_ull) { static_assert(_Nd <= (2 * _Nd_ull), "Maximum supported integer size is 128-bit"); constexpr auto __max_ull = numeric_limits::max(); unsigned long long __low = __x & __max_ull; unsigned long long __high = __x >> _Nd_ull; return __builtin_popcountll(__low) + __builtin_popcountll(__high); } } template constexpr _Tp __bit_ceil(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0 || __x == 1) return 1; auto __shift_exponent = _Nd - __countl_zero((_Tp)(__x - 1u)); #ifdef _GLIBCXX_HAVE_BUILTIN_IS_CONSTANT_EVALUATED if (!__builtin_is_constant_evaluated()) { __glibcxx_assert(__shift_exponent != numeric_limits<_Tp>::digits); } #endif using __promoted_type = decltype(__x << 1); if _GLIBCXX17_CONSTEXPR(!is_same<__promoted_type, _Tp>::value) { const int __extra_exp = sizeof(__promoted_type) / sizeof(_Tp) / 2; __shift_exponent |= (__shift_exponent & _Nd) << __extra_exp; } return (_Tp)1u << __shift_exponent; } template constexpr _Tp __bit_floor(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; if (__x == 0) return 0; return (_Tp)1u << (_Nd - __countl_zero((_Tp)(__x >> 1))); } template constexpr _Tp __bit_width(_Tp __x) noexcept { constexpr auto _Nd = numeric_limits<_Tp>::digits; return _Nd - __countl_zero(__x); } } // namespace std #endif #endif #line 2 "Library\\lib\\limits" #line 4 "Library\\lib\\limits" namespace workspace { template struct numeric_limits : std::numeric_limits<_Tp> {}; #ifdef __SIZEOF_INT128__ template <> struct numeric_limits<__uint128_t> { constexpr static __uint128_t max() { return ~__uint128_t(0); } constexpr static __uint128_t min() { return 0; } }; template <> struct numeric_limits<__int128_t> { constexpr static __int128_t max() { return numeric_limits<__uint128_t>::max() >> 1; } constexpr static __int128_t min() { return -max() - 1; } }; #endif } // namespace workspace #line 16 "Library\\lib\\alias" namespace workspace { constexpr static char eol = '\n'; using namespace std; using i32 = int_least32_t; using u32 = uint_least32_t; using i64 = int_least64_t; using u64 = uint_least64_t; #ifdef __SIZEOF_INT128__ using i128 = __int128_t; using u128 = __uint128_t; #else #warning 128-bit integer is not available. #endif namespace _alias_impl { template struct first_arg { using type = void; }; template struct parse_comp : first_arg<_Tp> {}; template struct parse_comp<_Tp, std::__void_t> : first_arg {}; template struct first_arg<_R(_Tp, _Args...)> { using type = _Tp; }; template struct first_arg<_R (*)(_Tp, _Args...)> { using type = _Tp; }; template struct first_arg<_R (_G::*)(_Tp, _Args...)> { using type = _Tp; }; template struct first_arg<_R (_G::*)(_Tp, _Args...) const> { using type = _Tp; }; } // namespace _alias_impl template > decltype(auto) make_priority_queue(_Compare __x = _Compare()) noexcept { using type = std::conditional_t< std::is_void<_Tp>::value, std::decay_t::type>, _Tp>; return std::priority_queue, _Compare>(__x); } template > decltype(auto) make_set(_Compare __x = _Compare()) noexcept { using type = std::conditional_t< std::is_void<_Tp>::value, std::decay_t::type>, _Tp>; return std::set(__x); } template > decltype(auto) make_map(_Compare __x = _Compare()) noexcept { return std::map<_Key, _Mapped, _Compare>(__x); } template () < std::declval())> constexpr typename std::conditional::value, const _T1 &, typename std::common_type<_T1, _T2>::type>::type min(const _T1 &__x, const _T2 &__y) noexcept { return __y < __x ? __y : __x; } template ()( std::declval(), std::declval()))> constexpr typename std::conditional::value, const _T1 &, typename std::common_type<_T1, _T2>::type>::type min(const _T1 &__x, const _T2 &__y, _Compare __comp) noexcept { return __comp(__y, __x) ? __y : __x; } template () < std::declval())> constexpr _Tp min(std::initializer_list<_Tp> __x) noexcept { return *std::min_element(__x.begin(), __x.end()); } template ()( std::declval(), std::declval()))> constexpr _Tp min(std::initializer_list<_Tp> __x, _Compare __comp) noexcept { return *std::min_element(__x.begin(), __x.end(), __comp); } template () < std::declval())> constexpr typename std::conditional::value, const _T1 &, typename std::common_type<_T1, _T2>::type>::type max(const _T1 &__x, const _T2 &__y) noexcept { return __x < __y ? __y : __x; } template ()( std::declval(), std::declval()))> constexpr typename std::conditional::value, const _T1 &, typename std::common_type<_T1, _T2>::type>::type max(const _T1 &__x, const _T2 &__y, _Compare __comp) noexcept { return __comp(__x, __y) ? __y : __x; } template () < std::declval())> constexpr _Tp max(std::initializer_list<_Tp> __x) noexcept { return *std::max_element(__x.begin(), __x.end()); } template ()( std::declval(), std::declval()))> constexpr _Tp max(std::initializer_list<_Tp> __x, _Compare __comp) noexcept { return *std::max_element(__x.begin(), __x.end(), __comp); } template constexpr _Tp __bsf(_Tp __x) noexcept { return std::__countr_zero(__x); } template constexpr _Tp __bsr(_Tp __x) noexcept { return std::__bit_width(__x) - 1; } } // namespace workspace #line 6 "other-workspace\\b.cc" // #include "lib/cxx20" #line 1 "Library\\lib\\direct" #ifdef ONLINE_JUDGE #pragma GCC optimize("O3") #pragma GCC target("avx,avx2") #pragma GCC optimize("unroll-loops") #endif #line 8 "other-workspace\\b.cc" // #include "lib/opt" #line 2 "Library\\src\\sys\\call_once.hpp" /** * @file call_once.hpp * @brief Call Once */ #line 9 "Library\\src\\sys\\call_once.hpp" namespace workspace { /** * @brief Call once. */ template void call_once(_F &&__f) { static std::unordered_set __called; if (__called.count(std::addressof(__f))) return; __called.emplace(std::addressof(__f)); __f(); } } // namespace workspace #line 2 "Library\\src\\sys\\clock.hpp" /* * @fn clock.hpp * @brief Clock */ #line 9 "Library\\src\\sys\\clock.hpp" namespace workspace { using namespace std::chrono; namespace internal { // The start time of the program. const auto start_time{system_clock::now()}; } // namespace internal /* * @fn elapsed * @return elapsed time of the program */ int64_t elapsed() { const auto end_time{system_clock::now()}; return duration_cast(end_time - internal::start_time).count(); } } // namespace workspace #line 2 "Library\\src\\sys\\ejection.hpp" /** * @file ejection.hpp * @brief Ejection */ #line 9 "Library\\src\\sys\\ejection.hpp" namespace workspace { namespace internal { struct ejection { bool exit = 0; }; } // namespace internal /** * @brief eject from a try block, throw nullptr * @param arg output */ template void eject(Tp const &arg) { std::cout << arg << "\n"; throw internal::ejection{}; } void exit() { throw internal::ejection{true}; } } // namespace workspace #line 2 "Library\\src\\sys\\iteration.hpp" /** * @file iteration.hpp * @brief Case Iteration */ #line 9 "Library\\src\\sys\\iteration.hpp" #line 11 "Library\\src\\sys\\iteration.hpp" namespace workspace { void main(); struct { // 1-indexed unsigned current{0}; unsigned total{1}; void read() { (std::cin >> total).ignore(); } int iterate() { static bool once = false; assert(!once); once = true; while (current++ < total) { try { main(); } catch (internal::ejection const& status) { if (status.exit) break; } } return 0; } } case_info; } // namespace workspace #line 2 "Library\\lib\\utils" // #include "src/utils/cached.hpp" #line 2 "Library\\src\\utils\\cat.hpp" /** * @file cat.hpp * @brief Cat */ #line 9 "Library\\src\\utils\\cat.hpp" namespace workspace { /** * @brief Concatenate two sequences. * * @param __c1 * @param __c2 * @return Concatenated sequence. */ template constexpr decltype(auto) cat(_C1 &&__c1, _C2 &&__c2) noexcept { auto __c = std::forward<_C1>(__c1); if constexpr (std::is_rvalue_reference::value) __c.insert(std::end(__c), std::move_iterator(std::begin(__c2)), std::move_iterator(std::end(__c2))); else __c.insert(std::end(__c), std::cbegin(__c2), std::cend(__c2)); return __c; } /** * @return Concatenated sequence. */ template constexpr decltype(auto) cat(_C1 &&__c1, _C2 &&__c2, _Args &&...__args) noexcept { return cat(cat(std::forward<_C1>(__c1), std::forward<_C2>(__c2)), std::forward<_Args>(__args)...); } } // namespace workspace #line 2 "Library\\src\\utils\\chval.hpp" /** * @file chval.hpp * @brief Change Less/Greater */ #line 9 "Library\\src\\utils\\chval.hpp" namespace workspace { /** * @brief Substitute __y for __x if __y < __x. * @param __x Reference * @param __y Comparison target * @return Whether or not __x is updated. */ template () < std::declval<_T1 &>())> typename std::enable_if::value, bool>::type chle( _T1 &__x, _T2 &&__y) noexcept { return __y < __x ? __x = std::forward<_T2>(__y), true : false; } /** * @brief Substitute __y for __x if __x < __y. * @param __x Reference * @param __y Comparison target * @return Whether or not __x is updated. */ template () < std::declval<_T2>())> typename std::enable_if::value, bool>::type chgr( _T1 &__x, _T2 &&__y) noexcept { return __x < __y ? __x = std::forward<_T2>(__y), true : false; } /** * @brief Substitute __y for __x if __comp(__y, __x) is true. * @param __x Reference * @param __y Comparison target * @param __comp Compare function object * @return Whether or not __x is updated. */ template ()(std::declval<_T2>(), std::declval<_T1 &>()))> typename std::enable_if::value, bool>::type chle( _T1 &__x, _T2 &&__y, _Compare __comp) noexcept { return __comp(__y, __x) ? __x = std::forward<_T2>(__y), true : false; } /** * @brief Substitute __y for __x if __comp(__x, __y) is true. * @param __x Reference * @param __y Comparison target * @param __comp Compare function object * @return Whether or not __x is updated. */ template ()(std::declval<_T1 &>(), std::declval<_T2>()))> typename std::enable_if::value, bool>::type chgr( _T1 &__x, _T2 &&__y, _Compare __comp) noexcept { return __comp(__x, __y) ? __x = std::forward<_T2>(__y), true : false; } } // namespace workspace #line 1 "Library\\src\\utils\\compare.hpp" /** * @file compare.hpp * @brief Compare */ #line 2 "Library\\src\\utils\\sfinae.hpp" /** * @file sfinae.hpp * @brief SFINAE */ #line 10 "Library\\src\\utils\\sfinae.hpp" #include #ifndef __INT128_DEFINED__ #ifdef __SIZEOF_INT128__ #define __INT128_DEFINED__ 1 #else #define __INT128_DEFINED__ 0 #endif #endif namespace std { #if __INT128_DEFINED__ template <> struct make_signed<__uint128_t> { using type = __int128_t; }; template <> struct make_signed<__int128_t> { using type = __int128_t; }; template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; }; template <> struct make_unsigned<__int128_t> { using type = __uint128_t; }; template <> struct is_signed<__uint128_t> : std::false_type {}; template <> struct is_signed<__int128_t> : std::true_type {}; template <> struct is_unsigned<__uint128_t> : std::true_type {}; template <> struct is_unsigned<__int128_t> : std::false_type {}; #endif } // namespace std namespace workspace { template struct variadic_front { using type = Tp; }; template struct variadic_back; template struct variadic_back { using type = Tp; }; template struct variadic_back { using type = typename variadic_back::type; }; template class trait> using enable_if_trait_type = typename std::enable_if::value>::type; /** * @brief Return type of subscripting ( @c [] ) access. */ template using subscripted_type = typename std::decay()[0])>::type; template using element_type = typename std::decay()))>::type; template struct has_begin : std::false_type {}; template struct has_begin<_Tp, decltype(std::begin(std::declval<_Tp>()), nullptr)> : std::true_type {}; template struct has_mod : std::false_type {}; template struct has_mod<_Tp, std::__void_t> : std::true_type {}; template struct is_integral_ext : std::false_type {}; template struct is_integral_ext< _Tp, typename std::enable_if::value>::type> : std::true_type {}; #if __INT128_DEFINED__ template <> struct is_integral_ext<__int128_t> : std::true_type {}; template <> struct is_integral_ext<__uint128_t> : std::true_type {}; #endif #if __cplusplus >= 201402 template constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value; #endif template struct multiplicable_uint { using type = uint_least32_t; }; template struct multiplicable_uint< _Tp, typename std::enable_if<(2 < sizeof(_Tp)) && (!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> { using type = uint_least64_t; }; #if __INT128_DEFINED__ template struct multiplicable_uint<_Tp, typename std::enable_if<(4 < sizeof(_Tp))>::type> { using type = __uint128_t; }; #endif template struct multiplicable_int { using type = typename std::make_signed::type>::type; }; template struct multiplicable { using type = std::conditional_t< is_integral_ext<_Tp>::value, std::conditional_t::value, typename multiplicable_int<_Tp>::type, typename multiplicable_uint<_Tp>::type>, _Tp>; }; } // namespace workspace #line 7 "Library\\src\\utils\\compare.hpp" namespace workspace { /** * @brief Compare 2 points by their value of `atan2`. * * @return */ template bool compare_arg(const _Tp& __p1, const _Tp& __p2) noexcept { const auto& [__x1, __y1] = __p1; const auto& [__x2, __y2] = __p2; using value_type = std::decay_t; using mul_type = typename multiplicable::type; if (__y1 == value_type(0)) return value_type(0) <= __x1 && (value_type(0) < __y2 || (__y2 == value_type(0) && __x2 < value_type(0))); return value_type(0) < __y1 ? value_type(0) <= __y2 && mul_type(__y1) * __x2 < mul_type(__x1) * __y2 : value_type(0) <= __y2 || mul_type(__y1) * __x2 < mul_type(__x1) * __y2; } } // namespace workspace #line 6 "Library\\lib\\utils" // #include "src/utils/fixed_point.hpp" // #include "src/utils/hash.hpp" // #include "src/utils/io/istream.hpp" // #include "src/utils/io/ostream.hpp" // #include "src/utils/io/read.hpp" #line 2 "Library\\src\\utils\\grid\\motion.hpp" /** * @file motion.hpp * @brief Motion */ #line 9 "Library\\src\\utils\\grid\\motion.hpp" namespace workspace { /** * @brief Transpose. * * @param __grid */ template >()[0].resize(0))> constexpr decltype(auto) transpose(_Grid &&__grid) noexcept { auto __h = std::size(__grid), __w = std::size(__grid[0]); std::decay_t<_Grid> __t(__w); for (auto &&__r : __t) __r.resize(__h); for (size_t __i = 0; __i != __h; ++__i) for (size_t __j = 0; __j != __w; ++__j) if constexpr (std::is_rvalue_reference::value) __t[__j][__i] = std::move(__grid[__i][__j]); else __t[__j][__i] = __grid[__i][__j]; return __t; } /** * @brief Transpose. * * @param __grid */ template constexpr decltype(auto) transpose(const _Tp (&__grid)[_Rows][_Cols]) noexcept { std::array, _Cols> __t; for (size_t __i = 0; __i != _Rows; ++__i) for (size_t __j = 0; __j != _Cols; ++__j) __t[__j][__i] = __grid[__i][__j]; return __t; } /** * @brief Transpose. * * @param __grid */ template constexpr decltype(auto) transpose(_Tp(&&__grid)[_Rows][_Cols]) noexcept { std::array, _Cols> __t; for (size_t __i = 0; __i != _Rows; ++__i) for (size_t __j = 0; __j != _Cols; ++__j) __t[__j][__i] = std::move(__grid[__i][__j]); return __t; } /** * @brief Transpose. * * @param __grid */ template constexpr decltype(auto) transpose( const std::array, _Rows> &__grid) noexcept { std::array, _Cols> __t; for (size_t __i = 0; __i != _Rows; ++__i) for (size_t __j = 0; __j != _Cols; ++__j) __t[__j][__i] = __grid[__i][__j]; return __t; } /** * @brief Transpose. * * @param __grid */ template constexpr decltype(auto) transpose( std::array, _Rows> &&__grid) noexcept { std::array, _Cols> __t; for (size_t __i = 0; __i != _Rows; ++__i) for (size_t __j = 0; __j != _Cols; ++__j) __t[__j][__i] = std::move(__grid[__i][__j]); return __t; } /** * @brief Roll the grid counter-clockwise. * * @param __grid * @return */ template decltype(auto) roll_ccw(_Grid &&__grid) noexcept { if constexpr (std::is_rvalue_reference::value) { auto __t = transpose(std::move(__grid)); std::reverse(std::begin(__t), std::end(__t)); return __t; } else { auto __t = transpose(__grid); std::reverse(std::begin(__t), std::end(__t)); return __t; } } /** * @brief Roll the grid clockwise. * * @param __grid * @return */ template decltype(auto) roll_cw(_Grid &&__grid) noexcept { if constexpr (std::is_rvalue_reference::value) { std::reverse(std::begin(__grid), std::end(__grid)); return transpose(std::move(__grid)); } else { auto __t = transpose(__grid); for (auto &&__r : __t) std::reverse(std::begin(__r), std::end(__r)); return __t; } } } // namespace workspace #line 2 "Library\\src\\utils\\io\\setup.hpp" /** * @file setup.hpp * @brief I/O Setup */ #line 10 "Library\\src\\utils\\io\\setup.hpp" namespace workspace { /** * @brief Setup I/O. * @param __n Standard output precision */ void io_setup(int __n) { std::cin.tie(0)->sync_with_stdio(0); std::cout << std::fixed << std::setprecision(__n); #ifdef _buffer_check atexit([] { char bufc; if (std::cin >> bufc) std::cerr << "\n\033[43m\033[30mwarning: buffer not empty.\033[0m\n\n"; }); #endif } } // namespace workspace #line 2 "Library\\src\\utils\\iterator\\category.hpp" /* * @file category.hpp * @brief Iterator Category */ #line 10 "Library\\src\\utils\\iterator\\category.hpp" namespace workspace { /* * @tparam Tuple Tuple of iterator types */ template ::value - 1> struct common_iterator_category { using type = typename std::common_type< typename common_iterator_category::type, typename std::iterator_traits::type>::iterator_category>::type; }; template struct common_iterator_category { using type = typename std::iterator_traits< typename std::tuple_element<0, Tuple>::type>::iterator_category; }; } // namespace workspace #line 2 "Library\\src\\utils\\iterator\\reverse.hpp" /* * @file reverse_iterator.hpp * @brief Reverse Iterator */ #if __cplusplus >= 201703L #include #include namespace workspace { /* * @class reverse_iterator * @brief Wrapper class for `std::reverse_iterator`. * @see http://gcc.gnu.org/PR51823 */ template class reverse_iterator : public std::reverse_iterator { using base_std = std::reverse_iterator; std::optional deref; public: using base_std::reverse_iterator; constexpr typename base_std::reference operator*() noexcept { if (!deref) { Iterator tmp = base_std::current; deref = *--tmp; } return deref.value(); } constexpr reverse_iterator &operator++() noexcept { base_std::operator++(); deref.reset(); return *this; } constexpr reverse_iterator &operator--() noexcept { base_std::operator++(); deref.reset(); return *this; } constexpr reverse_iterator operator++(int) noexcept { base_std::operator++(); deref.reset(); return *this; } constexpr reverse_iterator operator--(int) noexcept { base_std::operator++(); deref.reset(); return *this; } }; } // namespace workspace #endif #line 2 "Library\\src\\utils\\make_vector.hpp" /** * @file make_vector.hpp * @brief Multi-dimensional Vector */ #if __cplusplus >= 201703L #include #include namespace workspace { /** * @brief Make a multi-dimensional vector. * * @param __dim Dimension * @param __x Initial value */ template constexpr decltype(auto) make_vector([[maybe_unused]] _Dim* __dim, const _Tp& __x = _Tp()) { static_assert(std::is_convertible<_Dim, size_t>::value); if constexpr (_Nm) return std::vector(*__dim, make_vector<_Tp, _Dim, _Nm - 1>(std::next(__dim), __x)); else return __x; } /** * @brief Make a multi-dimensional vector. * * @param __dim Dimension * @param __x Initial value */ template constexpr decltype(auto) make_vector(const _Dim (&__dim)[_Nm], const _Tp& __x = _Tp()) { return make_vector<_Tp, _Dim, _Nm>((_Dim*)__dim, __x); } /** * @brief Make a multi-dimensional vector. * * @param __dim Dimension * @param __x Initial value */ template constexpr decltype(auto) make_vector([[maybe_unused]] const _Dim& __dim, const _Tp& __x = _Tp()) { if constexpr (_Nm == std::tuple_size<_Dim>::value) return __x; else { static_assert( std::is_convertible, size_t>::value); return std::vector(std::get<_Nm>(__dim), make_vector<_Tp, _Dim, _Nm + 1>(__dim, __x)); } } } // namespace workspace #endif #line 2 "Library\\src\\utils\\py-like\\enumerate.hpp" /** * @file enumerate.hpp * @brief Enumerate */ #line 2 "Library\\src\\utils\\py-like\\range.hpp" /** * @file range.hpp * @brief Range */ #line 9 "Library\\src\\utils\\py-like\\range.hpp" #line 2 "Library\\src\\utils\\py-like\\reversed.hpp" /** * @file reversed.hpp * @brief Reversed */ #include #line 10 "Library\\src\\utils\\py-like\\reversed.hpp" namespace workspace { namespace _reversed_impl { template class reversed { _Container __cont; public: constexpr reversed(_Container &&__cont) noexcept : __cont(__cont) {} constexpr decltype(auto) begin() noexcept { return std::rbegin(__cont); } constexpr decltype(auto) begin() const noexcept { return std::rbegin(__cont); } constexpr decltype(auto) end() noexcept { return std::rend(__cont); } constexpr decltype(auto) end() const noexcept { return std::rend(__cont); } constexpr decltype(auto) size() const noexcept { return std::size(__cont); } }; } // namespace _reversed_impl template constexpr decltype(auto) reversed(_Container &&__cont) noexcept { return _reversed_impl::reversed<_Container>{std::forward<_Container>(__cont)}; } template constexpr decltype(auto) reversed( std::initializer_list<_Tp> &&__cont) noexcept { return _reversed_impl::reversed>{ std::forward>(__cont)}; } } // namespace workspace #line 12 "Library\\src\\utils\\py-like\\range.hpp" #if __cplusplus >= 201703L namespace workspace { template class range { _Index __first, __last; public: class iterator { _Index current; public: using difference_type = std::ptrdiff_t; using value_type = _Index; using reference = typename std::add_const<_Index>::type &; using pointer = iterator; using iterator_category = std::random_access_iterator_tag; constexpr iterator(const _Index &__i = _Index()) noexcept : current(__i) {} constexpr bool operator==(const iterator &__x) const noexcept { return current == __x.current; } constexpr bool operator!=(const iterator &__x) const noexcept { return current != __x.current; } constexpr bool operator<(const iterator &__x) const noexcept { return current < __x.current; } constexpr bool operator<=(const iterator &__x) const noexcept { return current <= __x.current; } constexpr bool operator>(const iterator &__x) const noexcept { return current > __x.current; } constexpr bool operator>=(const iterator &__x) const noexcept { return current >= __x.current; } constexpr iterator &operator++() noexcept { ++current; return *this; } constexpr iterator &operator++(int) noexcept { auto __tmp = *this; ++current; return __tmp; } constexpr iterator &operator--() noexcept { --current; return *this; } constexpr iterator &operator--(int) noexcept { auto __tmp = *this; --current; return __tmp; } constexpr difference_type operator-(const iterator &__x) const noexcept { return current - __x.current; } constexpr iterator &operator+=(difference_type __x) noexcept { current += __x; return *this; } constexpr iterator operator+(difference_type __x) const noexcept { return iterator(*this) += __x; } constexpr iterator &operator-=(difference_type __x) noexcept { current -= __x; return *this; } constexpr iterator operator-(difference_type __x) const noexcept { return iterator(*this) -= __x; } constexpr reference operator*() const noexcept { return current; } }; constexpr range(_Index __first, _Index __last) noexcept : __first(__first), __last(__last) {} constexpr range(_Index __last) noexcept : __first(), __last(__last) {} constexpr iterator begin() const noexcept { return iterator{__first}; } constexpr iterator end() const noexcept { return iterator{__last}; } constexpr reverse_iterator rbegin() const noexcept { return reverse_iterator(end()); } constexpr reverse_iterator rend() const noexcept { return reverse_iterator(begin()); } constexpr size_t size() const noexcept { return std::distance(__first, __last); } }; template constexpr decltype(auto) rrange(_Args &&...__args) noexcept { return reversed(range(std::forward<_Args>(__args)...)); } template constexpr decltype(auto) iterate(_Container &&__cont) noexcept { return range(std::begin(__cont), std::end(__cont)); } template constexpr decltype(auto) riterate(_Container &&__cont) noexcept { return range(std::rbegin(__cont), std::rend(__cont)); } } // namespace workspace #endif #line 2 "Library\\src\\utils\\py-like\\zip.hpp" /** * @file zip.hpp * @brief Zip */ #line 11 "Library\\src\\utils\\py-like\\zip.hpp" #line 14 "Library\\src\\utils\\py-like\\zip.hpp" #if __cplusplus >= 201703L namespace workspace { namespace internal { template struct zipped_iterator; template struct zipped_iterator_tuple; template class zipped { using ref_tuple = std::tuple; ref_tuple args; template constexpr auto begin_cat() const noexcept { if constexpr (N != std::tuple_size::value) { return std::tuple_cat(std::tuple(std::begin(std::get(args))), begin_cat()); } else return std::tuple<>(); } template constexpr auto end_cat() const noexcept { if constexpr (N != std::tuple_size::value) { return std::tuple_cat(std::tuple(std::end(std::get(args))), end_cat()); } else return std::tuple<>(); } public: constexpr zipped(Args &&... args) noexcept : args(args...) {} class iterator { using base_tuple = typename zipped_iterator_tuple::type; public: using iterator_category = typename common_iterator_category::type; using difference_type = std::ptrdiff_t; using value_type = zipped_iterator; using reference = zipped_iterator &; using pointer = iterator; protected: value_type current; template constexpr bool equal(const iterator &rhs) const noexcept { if constexpr (N != std::tuple_size::value) { return std::get(current) == std::get(rhs.current) || equal(rhs); } else return false; } template constexpr void increment() noexcept { if constexpr (N != std::tuple_size::value) { ++std::get(current); increment(); } } template constexpr void decrement() noexcept { if constexpr (N != std::tuple_size::value) { --std::get(current); decrement(); } } template constexpr void advance(difference_type __d) noexcept { if constexpr (N != std::tuple_size::value) { std::get(current) += __d; advance(__d); } } public: constexpr iterator() noexcept = default; constexpr iterator(base_tuple const ¤t) noexcept : current(current) {} constexpr bool operator==(const iterator &rhs) const noexcept { return equal(rhs); } constexpr bool operator!=(const iterator &rhs) const noexcept { return !equal(rhs); } constexpr iterator &operator++() noexcept { increment(); return *this; } constexpr iterator &operator--() noexcept { decrement(); return *this; } constexpr bool operator<(const iterator &rhs) const noexcept { return std::get<0>(current) < std::get<0>(rhs.current); } constexpr bool operator<=(const iterator &rhs) const noexcept { return std::get<0>(current) <= std::get<0>(rhs.current); } constexpr iterator &operator+=(difference_type __d) noexcept { advance(__d); return *this; } constexpr iterator &operator-=(difference_type __d) noexcept { advance(-__d); return *this; } constexpr iterator operator+(difference_type __d) const noexcept { return iterator{*this} += __d; } constexpr iterator operator-(difference_type __d) const noexcept { return iterator{*this} -= __d; } constexpr difference_type operator-(const iterator &rhs) const noexcept { return std::get<0>(current) - std::get<0>(rhs.current); } constexpr reference operator*() noexcept { return current; } }; constexpr iterator begin() const noexcept { return iterator{begin_cat()}; } constexpr iterator end() const noexcept { return iterator{end_cat()}; } constexpr reverse_iterator rbegin() const noexcept { return reverse_iterator{end()}; } constexpr reverse_iterator rend() const noexcept { return reverse_iterator{begin()}; } }; template struct zipped_iterator_tuple { using type = decltype(std::tuple_cat( std::declval()))>>(), std::declval::type>())); }; template <> struct zipped_iterator_tuple<> { using type = std::tuple<>; }; template struct zipped_iterator : Iter_tuple { constexpr zipped_iterator(Iter_tuple const &__t) noexcept : Iter_tuple::tuple(__t) {} constexpr zipped_iterator(zipped_iterator const &__t) = default; constexpr zipped_iterator &operator=(zipped_iterator const &__t) = default; // Avoid move initialization. constexpr zipped_iterator(zipped_iterator &&__t) : zipped_iterator(static_cast(__t)) {} // Avoid move assignment. zipped_iterator &operator=(zipped_iterator &&__t) { return operator=(static_cast(__t)); } template friend constexpr auto &get(zipped_iterator const &__z) noexcept { return *std::get(__z); } template friend constexpr auto get(zipped_iterator &&__z) noexcept { return *std::get(__z); } }; } // namespace internal } // namespace workspace namespace std { template struct tuple_element> { using type = typename remove_reference::type>::reference>::type; }; template struct tuple_size> : tuple_size {}; } // namespace std namespace workspace { template constexpr auto zip(Args &&... args) noexcept { return internal::zipped(std::forward(args)...); } template constexpr auto zip(std::initializer_list const &... args) noexcept { return internal::zipped...>(args...); } } // namespace workspace #endif #line 10 "Library\\src\\utils\\py-like\\enumerate.hpp" #if __cplusplus >= 201703L namespace workspace { namespace _enumerate_impl { constexpr size_t min_size() noexcept { return SIZE_MAX; } template constexpr size_t min_size(_Container const &__cont, _Args &&... __args) noexcept { return std::min(std::size(__cont), min_size(std::forward<_Args>(__args)...)); } } // namespace _enumerate_impl template constexpr decltype(auto) enumerate(_Args &&... __args) noexcept { return zip(range(_enumerate_impl::min_size(__args...)), std::forward<_Args>(__args)...); } template constexpr decltype(auto) enumerate( std::initializer_list<_Args> const &... __args) noexcept { return zip(range(_enumerate_impl::min_size(__args...)), std::vector(__args)...); } } // namespace workspace #endif #line 2 "Library\\src\\utils\\rand\\rng.hpp" /** * @file rng.hpp * @brief Random Number Generator */ #line 9 "Library\\src\\utils\\rand\\rng.hpp" namespace workspace { template using uniform_distribution = typename std::conditional< std::is_integral<_Arithmetic>::value, std::uniform_int_distribution<_Arithmetic>, std::uniform_real_distribution<_Arithmetic>>::type; template class random_number_generator : uniform_distribution<_Arithmetic> { using base = uniform_distribution<_Arithmetic>; _Engine __engine; public: random_number_generator(_Arithmetic __min, _Arithmetic __max) : base(__min, __max), __engine(std::random_device{}()) {} random_number_generator(_Arithmetic __max = 1) : random_number_generator(0, __max) {} random_number_generator(typename base::param_type const& __param) : base(__param), __engine(std::random_device{}()) {} decltype(auto) operator()() noexcept { return base::operator()(__engine); } }; } // namespace workspace #line 2 "Library\\src\\utils\\rand\\shuffle.hpp" /** * @file shuffle.hpp * @brief Shuffle */ #line 10 "Library\\src\\utils\\rand\\shuffle.hpp" namespace workspace { template void shuffle(_RAIter __first, _RAIter __last) { static _Engine __engine(std::random_device{}()); std::shuffle(__first, __last, __engine); } } // namespace workspace #line 2 "Library\\src\\utils\\rand\\tree.hpp" #line 4 "Library\\src\\utils\\rand\\tree.hpp" #line 6 "Library\\src\\utils\\rand\\tree.hpp" namespace workspace { auto random_tree(std::size_t __n) { std::vector> __edges; random_number_generator rng(std::size_t(0), __n); for (std::size_t __i = 1; __i != __n; ++__i) __edges.emplace_back(__i + 1, rng() % __i + 1); return __edges; } } // namespace workspace #line 2 "Library\\src\\utils\\round_div.hpp" /* * @file round_div.hpp * @brief Round Integer Division */ #line 9 "Library\\src\\utils\\round_div.hpp" #line 11 "Library\\src\\utils\\round_div.hpp" namespace workspace { /* * @fn floor_div * @brief floor of fraction. * @param x the numerator * @param y the denominator * @return maximum integer z s.t. z <= x / y * @note y must be nonzero. */ template constexpr typename std::enable_if<(is_integral_ext::value && is_integral_ext::value), typename std::common_type::type>::type floor_div(T1 x, T2 y) { assert(y != 0); if (y < 0) x = -x, y = -y; return x < 0 ? (x - y + 1) / y : x / y; } /* * @fn ceil_div * @brief ceil of fraction. * @param x the numerator * @param y the denominator * @return minimum integer z s.t. z >= x / y * @note y must be nonzero. */ template constexpr typename std::enable_if<(is_integral_ext::value && is_integral_ext::value), typename std::common_type::type>::type ceil_div(T1 x, T2 y) { assert(y != 0); if (y < 0) x = -x, y = -y; return x < 0 ? x / y : (x + y - 1) / y; } } // namespace workspace #line 11 "other-workspace\\b.cc" signed main() { using namespace workspace; io_setup(15); /* given case_info.read(); //*/ /* unspecified case_info.total = -1; //*/ return case_info.iterate(); } #line 2 "Library\\src\\data_structure\\segment_tree\\basic.hpp" /** * @file basic.hpp * @brief Segment Tree */ #line 10 "Library\\src\\data_structure\\segment_tree\\basic.hpp" #if __cplusplus >= 201703L #include #endif #line 2 "Library\\src\\algebra\\system\\monoid.hpp" /* * @file monoid.hpp * @brief Monoid */ #line 9 "Library\\src\\algebra\\system\\monoid.hpp" namespace workspace { template struct min_monoid { using value_type = T; static T min, max; T value; min_monoid() : value(max) {} min_monoid(const T &value) : value(value) {} operator T() const { return value; } min_monoid operator+(const min_monoid &rhs) const { return value < rhs.value ? *this : rhs; } min_monoid operator*(const E &rhs) const; }; template T min_monoid::min = std::numeric_limits::min() / 2; template T min_monoid::max = std::numeric_limits::max() / 2; template struct max_monoid : min_monoid { using base = min_monoid; using base::min_monoid; max_monoid() : base(base::min) {} max_monoid operator+(const max_monoid &rhs) const { return !(base::value < rhs.value) ? *this : rhs; } max_monoid operator*(const E &rhs) const; }; } // namespace workspace #line 2 "Library\\src\\algebra\\system\\operation.hpp" /** * @file operation.hpp * @brief Operation Traits */ #line 9 "Library\\src\\algebra\\system\\operation.hpp" namespace workspace { // Unary `+` template using require_unary_plus = std::enable_if_t< std::is_convertible()), _Tp>::value>; template struct has_unary_plus : std::false_type {}; template struct has_unary_plus<_Tp, require_unary_plus<_Tp>> : std::true_type {}; // Unary `-` template using require_unary_minus = std::enable_if_t< std::is_convertible()), _Tp>::value>; template struct has_unary_minus : std::false_type {}; template struct has_unary_minus<_Tp, require_unary_minus<_Tp>> : std::true_type {}; // Binary `+` template using require_binary_plus = std::enable_if_t() + std::declval()), _Tp1>::value>; template struct has_binary_plus : std::false_type {}; template struct has_binary_plus<_Tp1, _Tp2, require_binary_plus<_Tp1, _Tp2>> : std::true_type {}; // Binary `-` template using require_binary_minus = std::__void_t() - std::declval())>; template struct has_binary_minus : std::false_type {}; template struct has_binary_minus<_Tp1, _Tp2, require_binary_minus<_Tp1, _Tp2>> : std::true_type {}; // Binary `*` template using require_binary_multiplies = std::enable_if_t() * std::declval()), _Tp1>::value>; template struct has_binary_multiplies : std::false_type {}; template struct has_binary_multiplies<_Tp1, _Tp2, require_binary_multiplies<_Tp1, _Tp2>> : std::true_type {}; // Binary `/` template using require_binary_divides = std::enable_if_t() / std::declval()), _Tp1>::value>; template struct has_binary_divides : std::false_type {}; template struct has_binary_divides<_Tp1, _Tp2, require_binary_divides<_Tp1, _Tp2>> : std::true_type {}; // Binary `%` template using require_binary_modulus = std::enable_if_t() % std::declval()), _Tp1>::value>; template struct has_binary_modulus : std::false_type {}; template struct has_binary_modulus<_Tp1, _Tp2, require_binary_modulus<_Tp1, _Tp2>> : std::true_type {}; } // namespace workspace #line 17 "Library\\src\\data_structure\\segment_tree\\basic.hpp" namespace workspace { /** * @tparam _Monoid `operator+`, `operator=` * @tparam Container_tmpl `operator[]`, `size_type` */ template class Container_tmpl = std::vector> class segment_tree { static_assert(has_binary_plus<_Monoid>::value, "\'_Monoid\' has no proper binary \'operator+\'."); constexpr static bool __support_lazy = !std::is_void<_Endomorphism>::value; #if __cplusplus < 201703L struct node_base { node_base() = default; node_base(_Monoid const &__x) : __v(__x) {} operator bool() const { return __f; } void operator=(_Monoid const &__x) { __v = __x; __f = true; } _Monoid &operator*() { return __v; } _Monoid const &operator*() const { return __v; } void reset() { __f = false; } private: _Monoid __v{}; bool __f{true}; }; #else struct node_base : std::optional<_Monoid> { using std::optional<_Monoid>::operator=; node_base() : std::optional<_Monoid>(_Monoid{}) {} }; #endif struct node_lazy : node_base { using node_base::operator=; std::optional<_Endomorphism> __z; }; using node = typename std::conditional<__support_lazy, node_lazy, node_base>::type; using container_type = Container_tmpl; public: using size_type = typename container_type::size_type; using difference_type = typename container_type::difference_type; class iterator { segment_tree *__p; size_type __i; public: using difference_type = segment_tree::difference_type; using value_type = _Monoid; using reference = _Monoid &; using pointer = iterator; using iterator_category = std::random_access_iterator_tag; /** * @brief Construct a new iterator object * */ iterator() = default; /** * @brief Construct a new iterator object * * @param __p Pointer to a segment tree object * @param __i Index */ iterator(segment_tree *__p, size_type __i) : __p(__p), __i(__i) {} bool operator==(iterator const &rhs) const { return __p == rhs.__p && __i == rhs.__i; } bool operator!=(iterator const &rhs) const { return !operator==(rhs); } bool operator<(iterator const &rhs) const { return __i < rhs.__i; } bool operator>(iterator const &rhs) const { return __i > rhs.__i; } bool operator<=(iterator const &rhs) const { return __i <= rhs.__i; } bool operator>=(iterator const &rhs) const { return __i >= rhs.__i; } iterator &operator++() { return ++__i, *this; } iterator &operator--() { return --__i, *this; } difference_type operator-(iterator const &rhs) const { return __i - rhs.__i; } /** * @brief * * @return reference */ reference operator*() const { return __p->operator[](__i); } }; using value_type = typename iterator::value_type; using reference = typename iterator::reference; iterator begin() { return {this, 0}; } iterator end() { return {this, size_orig}; } auto rbegin() { return std::make_reverse_iterator(end()); } auto rend() { return std::make_reverse_iterator(begin()); } protected: size_type size_orig, height, size_ext; container_type data; node &pull(size_type __i) noexcept { if (!data[__i]) data[__i] = *pull(__i << 1) + *pull(__i << 1 | 1); return data[__i]; } void push(size_type __i) { if (auto &__lz = data[__i].__z) { apply(data[__i << 1], *__lz); apply(data[__i << 1 | 1], *__lz); __lz.reset(); } } void sync(size_type __i) { if (!data[__i]) data[__i] = *pull(__i << 1) + *pull(__i << 1 | 1); else if (data[__i].__z) { apply(data[__i << 1], *data[__i].__z); apply(data[__i << 1 | 1], *data[__i].__z); data[__i].__z.reset(); } } template void apply(node &__nd, _End const &endo) { *__nd = *__nd * endo; __nd.__z = __nd.__z ? *__nd.__z * endo : endo; } // template // void apply_top(size_t __i, _End const &endo) { // auto &__nd = pull(__i); // *__nd = *__nd * endo; // __nd.__z = __nd.__z ? *__nd.__z * endo : endo; // } template constexpr decltype(std::declval()(_Monoid{})) pass_args( Pred pred, _Monoid const &_1, [[maybe_unused]] size_type _2) { return pred(_1); } template constexpr decltype(std::declval()(_Monoid{}, size_type{})) pass_args( Pred pred, _Monoid const &_1, size_type _2) { return pred(_1, _2); } template size_type left_partition_subtree(size_type __i, _Monoid mono, size_type step, Pred pred) { assert(__i); while (__i < size_ext) { if constexpr (__support_lazy) push(__i); const _Monoid tmp = *pull((__i <<= 1) | 1) + mono; if (pass_args(pred, tmp, ((__i | 1) << --step) ^ size_ext)) mono = tmp; else ++__i; } return ++__i -= size_ext; } template size_type right_partition_subtree(size_type __i, _Monoid mono, size_type step, Pred pred) { assert(__i); while (__i < size_ext) { if constexpr (__support_lazy) push(__i); const _Monoid tmp = mono + *pull(__i <<= 1); if (pass_args(pred, tmp, ((__i | 1) << --step) ^ size_ext)) ++__i, mono = tmp; } return (__i -= size_ext) < size_orig ? __i : size_orig; } public: /** * @brief Construct a new segment tree object. * * @param __n Number of elements. */ segment_tree(size_type __n = 0) : size_orig{__n}, height(__n > 1 ? 64 - __builtin_clzll(__n - 1) : 0), size_ext{size_type{1} << height} { if constexpr (std::is_constructible::value) data = container_type(size_ext << 1); data[0].reset(); } /** * @brief Construct a new segment tree object. * * @param __n Number of elements. * @param __x */ segment_tree(size_type __n, const value_type &__x) : segment_tree(__n) { for (auto __i = begin(); __i != end(); ++__i) *__i = __x; } /** * @brief Construct a new segment tree object. * * @param __n Number of elements. * @param __x */ template segment_tree(size_type __n, _Tp &&__x) : segment_tree(__n) { for (auto __i = begin(); __i != end(); ++__i) *__i = __x; } /** * @brief Construct a new segment tree object. * * @param __first * @param __last */ template > segment_tree(_Iterator __first, _Iterator __last) : segment_tree(std::distance(__first, __last)) { for (auto __i = begin(); __first != __last; ++__i, ++__first) *__i = *__first; } /** * @brief Conversion to container_type. */ operator Container_tmpl() const { Container_tmpl __c(size()); for (size_type __i = 0; __i != size(); ++__i) __c[__i] = *data[__i | size_ext]; return __c; } /** * @return Number of elements. */ size_type size() const { return size_orig; } /** * @return Whether %segment_tree is empty. */ bool empty() const { return !size(); } /** * @brief Subscripting ( @c [] ) access. * * @param __i Index of the element * @return Reference to the element. */ reference operator[](size_type __i) { assert(__i < size_orig); reference __ref = *data[__i |= size_ext]; if constexpr (__support_lazy) { for (size_t __h{height}; __h; --__h) { push(__i >> __h); data[__i >> __h].reset(); } } else { while (data[__i >>= 1]) data[__i].reset(); } return __ref; } /** * @param first Left end, inclusive * @param last Right end, exclusive * @return Sum of elements in the interval. */ value_type fold(size_type first, size_type last) { assert(last <= size_orig); if (!(first < last)) return {}; first += size_ext, last += size_ext; value_type left{}, right{}; for (size_t l = first, r = last--; l != r; l >>= 1, r >>= 1) { if (l & 1) left = left + *pull(l++); if (r & 1) right = *pull(--r) + right; if constexpr (__support_lazy) { if (data[first >>= 1].__z) left = left * *data[first].__z; if (data[last >>= 1].__z) right = right * *data[last].__z; } } if constexpr (__support_lazy) { while (first >>= 1, last >>= 1) { if (data[first].__z) left = left * *data[first].__z; if (data[last].__z) right = right * *data[last].__z; } } // if (first >= last) return _Monoid{}; // first += size_ext, last += size_ext - 1; // _Monoid left{}, right{}; // for (size_t l = first, r = last + 1; last; l >>= 1, r >>= 1) { // if (l < r) { // if (l & 1) left = left + data[l++]; // if (r & 1) right = data[--r] + right; // } // if (first >>= 1, last >>= 1) { // left = left * lazy[first]; // right = right * lazy[last]; // } // } // return left + right; return left + right; } /** * @return The whole sum. */ value_type fold() { return *pull(1); } template void update(size_type first, size_type last, _End const &endo) { static_assert(__support_lazy); assert(last <= size_orig); if (!(first < last)) return; first += size_ext, last += size_ext; --last; for (auto i = height; i; --i) push(first >> i), push(last >> i); ++last; for (auto l = first, r = last; l < r; l >>= 1, r >>= 1) { if (l & 1) apply(pull(l++), endo); if (r & 1) apply(pull(--r), endo); } for (first >>= __builtin_ffs(first); data[first]; first >>= 1) data[first].reset(); for (last >>= __builtin_ffs(last); data[last]; last >>= 1) data[last].reset(); } /** * @brief Binary search for the partition point. * @param right Right fixed end of the interval, exclusive * @param pred Predicate in the form of either 'bool(_Monoid)' or * 'bool(_Monoid, size_type)' * @return Left end of the extremal interval satisfying the condition, * inclusive. */ template size_type left_partition(size_type right, Pred pred) { assert(right <= size_orig); right += size_ext; if constexpr (__support_lazy) for (size_t i{height}; i; --i) push(right >> i); _Monoid mono{}; for (size_type left{size_ext}, step{}; left != right; left >>= 1, right >>= 1, ++step) { if ((left & 1) != (right & 1)) { _Monoid tmp = *pull(--right) + mono; if (!pass_args(pred, tmp, (right << step) ^ size_ext)) return left_partition_subtree(right, mono, step, pred); mono = tmp; } } return 0; } /** * @brief Binary search for the partition point. * @param left Left fixed end of the interval, inclusive * @param pred Predicate in the form of either 'bool(_Monoid)' or * 'bool(_Monoid, size_type)' * @return Right end of the extremal interval satisfying the condition, * exclusive. */ template size_type right_partition(size_type left, Pred pred) { assert(left <= size_orig); left += size_ext; if constexpr (__support_lazy) for (size_t i{height}; i; --i) push(left >> i); _Monoid mono{}; for (size_type right{size_ext << 1}, step{}; left != right; left >>= 1, right >>= 1, ++step) { if ((left & 1) != (right & 1)) { _Monoid tmp = mono + *pull(left); if (!pass_args(pred, tmp, ((left + 1) << step) ^ size_ext)) return right_partition_subtree(left, mono, step, pred); mono = tmp; ++left; } } return size_orig; } }; template > segment_tree(_Iterator, _Iterator) -> segment_tree::value_type>; template > segment_tree(typename segment_tree<_Tp>::size_type, _Tp &&) -> segment_tree<_Tp>; } // namespace workspace #line 27 "other-workspace\\b.cc" namespace workspace { void main() { // start here! constexpr auto inf = INT64_MAX / 2; int n, K, x, y; cin >> n >> K >> x >> y; x %= K, y %= K; struct state { i64 val = -inf; state operator+(state const &x) const { return val < x.val ? x : *this; } }; vector rows(K, segment_tree(K)), cols(rows); rows[x][y] = cols[y][x] = {0}; auto op = [&](int i, int j, auto &&f) -> auto { auto &r = rows[i], &c = cols[j]; f(r[j].val); c[i] = r[j]; }; vector rm(K, -inf), cm(K, -inf); for (auto i : range(n)) { cin >> i; i %= K; for (auto j : range(K)) { op(j, (K * 2 - i - j) % K, [](auto &v) { ++v; }); } for (auto &&[a, b] : zip(rm, rows)) { a = b.fold().val; } for (auto &&[a, b] : zip(cm, cols)) { a = b.fold().val; } for (auto j : range(K)) { op(j, i, [&](auto &x) { chgr(x, rm[j]); }); op(i, j, [&](auto &x) { chgr(x, cm[j]); }); } } i64 ans = -inf; for (auto &&x : rows) { chgr(ans, x.fold().val); } cout << ans << "\n"; } } // namespace workspace