#line 2 "/home/snow/competitive-programming/competitive-programming-library/snow/template.hpp" #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include constexpr long long INF = 1LL << 60; constexpr long double PI = 3.141592653589; #define rep(i, n) for (ll i = 0; i < (n); ++i) #define rep1(i, n) for (ll i = 1; i <= (n); ++i) #define rrep(i, n) for (ll i = (n - 1); i >= 0; --i) #define ALL(obj) (obj).begin(), (obj).end() #define RALL(obj) (obj).rbegin(), (obj).rend() #define pb push_back #define to_s to_string #define len(v) (ll) v.size() #define debug(x) cout << #x << ": " << (x) << '\n' using namespace std; typedef long long ll; typedef unsigned long long ull; typedef long double ld; typedef pair P; typedef tuple tpl; template using vec = vector; template using vec2 = vector>; template using vec3 = vector>>; template < typename T > inline bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template < typename T > inline bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } #line 4 "/home/snow/competitive-programming/competitive-programming-library/snow/io/setup.hpp" namespace snow{ struct IoSetup { IoSetup() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(10); } } iosetup; } // namespace snow #line 5 "/home/snow/competitive-programming/competitive-programming-library/snow/io/helper.hpp" template< typename T1, typename T2 > std::ostream &operator << (std::ostream &os, const std::pair< T1, T2 > &p) { os << p.first << " " << p.second; return os; } template< typename T1, typename T2 > std::istream &operator >> (std::istream &is, std::pair< T1, T2 > &p) { is >> p.first >> p.second; return is; } template< typename T1, typename T2, typename T3 > std::ostream &operator << (std::ostream &os, const std::tuple< T1, T2, T3 > &t) { auto &[a, b, c] = t; os << a << " " << b << " " << c; return os; } template< typename T1, typename T2, typename T3 > std::istream &operator >> (std::istream &is, std::tuple< T1, T2, T3 > &t) { auto &[a, b, c] = t; is >> a >> b >> c; return is; } template< typename T > std::ostream &operator << (std::ostream &os, const std::vector< T > &v){ for (int i = 0; i < (int)v.size(); ++i) { os << v[i] << (i + 1 != v.size() ? " " : ""); } return os; } template< typename T > std::istream &operator >> (std::istream &is, std::vector< T > &v){ for(T &in : v) is >> in; return is; } template< typename T > std::ostream &operator << (std::ostream &os, const std::set< T > &st){ int ct = 0; for(auto& s : st) os << s << (++ct != (int)st.size() ? " " : ""); return os; } template void input(T&... a){ (std::cin >> ... >> a); } void print() { std::cout << '\n'; } template void print(const T& a, const Ts&... b){ std::cout << a; (std::cout << ... << (std::cout << ' ', b)); std::cout << '\n'; } int drop() { std::cout << '\n'; exit(0); } template int drop(const T& a, const Ts&... b){ std::cout << a; (std::cout << ... << (std::cout << ' ', b)); std::cout << '\n'; exit(0); } #line 4 "main.cpp" using namespace snow; // #include "snow/algorithm/binary-search.hpp" #line 1 "/home/snow/competitive-programming/competitive-programming-library/atcoder/modint.hpp" #line 6 "/home/snow/competitive-programming/competitive-programming-library/atcoder/modint.hpp" #include #ifdef _MSC_VER #include #endif #line 1 "/home/snow/competitive-programming/competitive-programming-library/atcoder/internal_math.hpp" #line 5 "/home/snow/competitive-programming/competitive-programming-library/atcoder/internal_math.hpp" #ifdef _MSC_VER #include #endif namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template constexpr int primitive_root = primitive_root_constexpr(m); // @param n `n < 2^32` // @param m `1 <= m < 2^32` // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64) unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; // y_max < m * (n + 1) // floor(y_max / m) <= n n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #line 1 "/home/snow/competitive-programming/competitive-programming-library/atcoder/internal_type_traits.hpp" #line 7 "/home/snow/competitive-programming/competitive-programming-library/atcoder/internal_type_traits.hpp" namespace atcoder { namespace internal { #ifndef _MSC_VER template using is_signed_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_unsigned_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using make_unsigned_int128 = typename std::conditional::value, __uint128_t, unsigned __int128>; template using is_integral = typename std::conditional::value || is_signed_int128::value || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using is_signed_int = typename std::conditional<(is_integral::value && std::is_signed::value) || is_signed_int128::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional<(is_integral::value && std::is_unsigned::value) || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional< is_signed_int128::value, make_unsigned_int128, typename std::conditional::value, std::make_unsigned, std::common_type>::type>::type; #else template using is_integral = typename std::is_integral; template using is_signed_int = typename std::conditional::value && std::is_signed::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional::value && std::is_unsigned::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional::value, std::make_unsigned, std::common_type>::type; #endif template using is_signed_int_t = std::enable_if_t::value>; template using is_unsigned_int_t = std::enable_if_t::value>; template using to_unsigned_t = typename to_unsigned::type; } // namespace internal } // namespace atcoder #line 14 "/home/snow/competitive-programming/competitive-programming-library/atcoder/modint.hpp" namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template using is_modint = std::is_base_of; template using is_modint_t = std::enable_if_t::value>; } // namespace internal template * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template * = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime; }; template struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template * = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template internal::barrett dynamic_modint::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template using is_static_modint = std::is_base_of; template using is_static_modint_t = std::enable_if_t::value>; template struct is_dynamic_modint : public std::false_type {}; template struct is_dynamic_modint> : public std::true_type {}; template using is_dynamic_modint_t = std::enable_if_t::value>; } // namespace internal } // namespace atcoder #line 9 "main.cpp" using namespace atcoder; using mint = modint998244353; int main() { ll N, K; cin >> N >> K; vec2 ret(K, vec(K, 0)); vec2 sum(K, vec(K, 0)); rep(i, K) rep(j, K) if(i < j) ret[i][j] = 1, sum[i][j] = i + j; bool flag = false; rep(i, N - 2){ vec2 next(K, vec(K, 0)); vec2 next_sum(K, vec(K, 0)); if(!flag){ vec cum(K); vec cumsum(K); rep(b, K) rep(a, K) if(a < b) cum[b] += ret[a][b], cumsum[b] += sum[a][b]; rep(b, K) rep(c, K) if(b > c){ mint num = cum[b] - ret[c][b]; mint S = cumsum[b] - sum[c][b]; next[b][c] += num; next_sum[b][c] += S + num * c; } } else{ vec cum(K); vec cumsum(K); rep(b, K) rep(a, K) if(a > b) cum[b] += ret[a][b], cumsum[b] += sum[a][b];; rep(b, K) rep(c, K) if(b < c){ mint num = cum[b] - ret[c][b]; mint S = cumsum[b] - sum[c][b]; next[b][c] += num; next_sum[b][c] += S + num * c; } } ret = next; sum = next_sum; flag = !flag; } mint ans = 0; mint ans_s = 0; rep(i, K) rep(j, K) ans += ret[i][j], ans_s += sum[i][j]; ans *= 2; ans_s *= 2; print(ans.val(), ans_s.val()); return 0; }