import sys sys.setrecursionlimit(10**6) int1 = lambda x: int(x)-1 p2D = lambda x: print(*x, sep="\n") def II(): return int(sys.stdin.buffer.readline()) def LI(): return list(map(int, sys.stdin.buffer.readline().split())) def LI1(): return list(map(int1, sys.stdin.buffer.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def BI(): return sys.stdin.buffer.readline().rstrip() def SI(): return sys.stdin.buffer.readline().rstrip().decode() # dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] dij = [(0, 1), (1, 0), (1, 1), (1, -1)] inf = 10**16 # md = 998244353 md = 10**9+7 def solve(k): cnt = [0, 1] for i in range(mx): ncnt = [0]*2 kd = k >> i & 1 nd = n >> i & 1 for move in range(2): pre = cnt[move] if pre == 0: continue for x in range(2): nm, y = divmod(x+kd+move, 2) if (x & y) ^ nd: continue ncnt[nm] += pre cnt = ncnt # print(k,i,cnt) if cnt[1]: return inf return cnt[0] mx = 22 n, K = LI() if K==0: print(1) exit() ans = 0 for k in range(K+1): cur = solve(k) if cur == inf: print("INF") exit() ans += cur print(ans)