#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LEN(x) (long long)(x.size()) #define FOR(i, a, n) for(int i=(a);i<(n); ++i) #define FOE(i, a) for(auto i : a) #define ALL(c) (c).begin(), (c).end() #define RALL(c) (c).rbegin(), (c).rend() #define SUM(x) std::accumulate(ALL(x), 0LL) #define MIN(v) *std::min_element(v.begin(), v.end()) #define MAX(v) *std::max_element(v.begin(), v.end()) #define EXIST(v, x) (std::find(v.begin(), v.end(), x) != v.end()) #define BIT_COUNT(bit) (__builtin_popcount(bit)) typedef long long LL; template std::vector make_v(size_t a){return std::vector(a);} template auto make_v(size_t a, Ts... ts){ return std::vector(ts...))>(a,make_v(ts...));} // C++14 template typename std::enable_if::value==0>::type fill_v(T &t,const V &v){t=v;} template typename std::enable_if::value!=0>::type fill_v(T &t,const V &v){for(auto &e:t) fill_v(e,v);} template inline T ceil(T a, T b) { return (a + b - 1) / b; } void print() { std::cout << std::endl; } template void print(Head&& head, Tail&&... tail) { std::cout << head; if (sizeof...(tail) != 0) {std::cout << " ";} print(std::forward(tail)...); } template void print(std::vector &v) {for (auto& a : v) { std::cout << a; if (&a != &v.back()) {std::cout << " ";} }std::cout << std::endl;} template void print(std::vector> &vv) { for (auto& v : vv) { print(v); }} void debug() { std::cerr << std::endl; } template void debug(Head&& head, Tail&&... tail) { std::cerr << head; if (sizeof...(tail) != 0) {std::cerr << " ";} print(std::forward(tail)...); } template void debug(std::vector &v) {for (auto& a : v) { std::cerr << a; if (&a != &v.back()) {std::cerr << " ";} }std::cerr << std::endl;} template void debug(std::vector> &vv) { for (auto& v : vv) { print(v); }} inline bool inside(long long y, long long x, long long H, long long W) {return 0 <= y and y < H and 0 <= x and x < W; } template inline double euclidean_distance(T y1, T x1, T y2, T x2) { return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); } template inline double manhattan_distance(T y1, T x1, T y2, T x2) { return abs(x1 - x2) + abs(y1 - y2); } template T &chmin(T &a, const T &b) { return a = std::min(a, b); } template T &chmax(T &a, const T &b) { return a = std::max(a, b); } bool is_bit_on(const unsigned long long bit, const unsigned int i) { return (bit >> i) & 1u; } unsigned long long bit_set(const unsigned long long bit, const unsigned int i, const unsigned int b) { assert(b == 0 or b == 1); if (b == 0) { return bit & ~(1ull << i); } else {return bit | (1ull << i); } } template inline std::vector unique(std::vector v) { sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); return v; } // 初項s交差d長さnの数列の和 long long sum_of_arithmetic_progression(long long s, long long d, long long n) { return n * (2 * s + (n - 1) * d) / 2; } // xが2の階乗かどうか判定 bool is_power_of_two(long long x) { return !(x & (x - 1)); } long long gcd(long long a, long long b) { if (b == 0) { return a; } return gcd(b, a % b); } long long gcd(std::vector &v) { long long ans = v[0]; for (int i = 1; i < (int) v.size(); ++i) { ans = gcd(ans, v[i]); } return ans; } long long lcm(long long a, long long b) { long long g = gcd(a, b); return a / g * b; } const int INF = 1u << 30u; // 1,073,741,824 const long long LINF = 1ull << 60u; const double EPS = 1e-9; const long double PI = acos(-1.0); const std::vector dy2 = {0, 1}, dx2 = {1, 0}; const std::vector dy4 = {0, 1, 0, -1}, dx4 = {1, 0, -1, 0}; const std::vector dy8 = {0, -1, 0, 1, 1, -1, -1, 1}, dx8 = {1, 0, -1, 0, 1, 1, -1, -1}; using namespace std; template struct mint { long long x; mint(long long x = 0) : x(x % mod) { } mint& operator+=(const mint a) { if ((x += a.x) >= mod) { x -= mod; } return *this; } mint& operator-=(const mint a) { if ((x += mod-a.x) >= mod) { x -= mod; } return *this; } mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this; } mint operator+(const mint a) const { mint res(*this); return res+=a; } mint operator-(const mint a) const { mint res(*this); return res-=a; } mint operator*(const mint a) const { mint res(*this); return res*=a; } mint pow(long long t) const { if (!t) { return 1; } mint a = pow(t>>1); a *= a; if (t&1) { a *= *this; } return a; } // for prime mod mint inv() const { return pow(mod-2); } mint& operator/=(const mint a) { return (*this) *= a.inv(); } mint operator/(const mint a) const { mint res(*this); return res/=a; } }; const int MOD = 998244353; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); LL N, K; cin >> N >> K; auto dp1 = make_v>(N + 1, K, K); auto dp2 = make_v>(N + 1, K, K); FOR(i, 0, K) { FOR(j, 0, K) { if (i != j) { dp1[2][i][j] += 1; dp2[2][i][j] += i + j; } } } FOR(d, 2, N) { FOR(i, 0, K) { // k < i; { // k, i, j mint acc1, acc2; FOR(k, 0, i) { acc1 += dp1[d][k][i]; acc2 += dp2[d][k][i]; } FOR(j, 0, i) { int k = j; dp1[d + 1][i][j] += acc1 - dp1[d][k][i]; dp2[d + 1][i][j] += acc2 - dp2[d][k][i]; dp2[d + 1][i][j] += (acc1 - dp1[d][k][i]) * k; } } // k >= i { // k, i, j mint acc1, acc2; FOR(k, i + 1, K) { acc1 += dp1[d][k][i]; acc2 += dp2[d][k][i]; } FOR(j, i + 1, K) { int k = j; dp1[d + 1][i][j] += acc1 - dp1[d][k][i]; dp2[d + 1][i][j] += acc2 - dp2[d][k][i]; dp2[d + 1][i][j] += (acc1 - dp1[d][k][i]) * k; } } } } mint ans1 = 0; mint ans2 = 0; FOR(i, 0, K) { FOR(j, 0, K) { if (i != j) { ans1 += dp1[N][i][j]; ans2 += dp2[N][i][j]; } } } print(ans1.x, ans2.x); return 0; }