n = int(input()) mod = 998244353 def gcd(a, b): while b: a, b = b, a % b return a def isPrimeMR(n): d = n - 1 d = d // (d & -d) L = [2] for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i * i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i % 2 if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret # 素数列挙 def prime_list(n): d = [] is_prime = [0] * (n + 1) is_prime[2] = 1 len3 = len(is_prime[3::2]) is_prime[3::2] = [1] * (len3) for i in range(3, int(n ** 0.5) + 1, 2): if is_prime[i]: len_is = len(is_prime[i * i :: i + i]) is_prime[i * i :: i + i] = [0] * len_is for j in range(n + 1): if is_prime[j] == 1: d.append(j) return d, is_prime primes, _ = prime_list(n ** 2 + 10) jisho = {} for i in range(len(primes)): jisho[primes[i]] = i memo = [0] * len(primes) for i in range(1, n): num = i * (n - i) temp = primeFactor(num) for key, val in temp.items(): memo[jisho[key]] = max(memo[jisho[key]], val) ans = 1 for i in range(len(primes)): ans *= pow(primes[i], memo[i], mod) ans %= mod print(ans)