func main() var n: int :: cui@inputInt() var m: int :: cui@inputInt() var graph: []list<@Edge> :: #[n]list<@Edge> for i(0, n - 1) do graph[i] :: #list<@Edge> end for for i(0, m - 1) var s: int :: cui@inputInt() - 1 var t: int :: cui@inputInt() - 1 var d: int :: cui@inputInt() do graph[s].add((#@Edge).init(t, d)) do graph[t].add((#@Edge).init(s, d)) end for var ok: int :: 0 var ng: int :: 10 ^ 9 while((ok - ng).abs() > 1) var mid: int :: (ok + ng) / 2 var dist: int :: f(n, graph, mid) if(dist < n) do ok :: mid else do ng :: mid end if end while var w: int :: ok var dist: int :: f(n, graph, ok) do cui@print("\{w} \{dist}\n") func f(n: int, graph: []list<@Edge>, w: int): int var dist: []int :: [n].repeat(n) do dist[0] :: 0 var pq: @Map :: #@Map do pq.add(0 * n + 0, 0) while loop(pq.size() <> 0) var p: @Node :: pq.begin() var key: int :: p.key var u: int :: p.value do pq.del(key) var dis: int :: key / n if(dis > dist[u]) skip loop end if do graph[u].head() for i(0, ^graph[u] - 1) var e: @Edge :: graph[u].get() var v: int :: e.dst var d: int :: e.d if(e.d >= w & dist[v] > dist[u] + 1) do dist[v] :: dist[u] + 1 do pq.add(dist[v] * n + v, v) end if do graph[u].next() end for end while ret dist[n - 1] end func end func class Edge() +var dst: int +var d: int +func init(dst: int, d: int): @Edge do me.dst :: dst do me.d :: d ret me end func end class class Node() +var height: int +var key: int +var value: int +var prev: Node +var next: Node +var lst: Node +var rst: Node +*func toStr(): []char ret me.value.toStr() end func +func init(key: int, value: int, prev: Node, next: Node): Node do me.height :: 1 do me.key :: key do me.value :: value do me.prev :: prev do me.next :: next ret me end func end class ; AVL Tree class Map() var root: @Node var change: bool var lMax: int var lMaxValue: int var num: int +*func toStr(): []char ret me.toGraph(me.root, "", "") end func func toGraph(t: @Node, head: []char, bar: []char): []char var res: []char :: "" if(t <>& null) do res :~ me.toGraph(t.rst, head ~ " ", "/") do res :~ head ~ bar ~ t.key.toStr() ~ "\n" do res :~ me.toGraph(t.lst, head ~ " ", "`") end if ret res end func +func size(): int ret me.num end func +func begin(): @Node var t: @Node :: me.root if(t =& null) ret null end if while(true) if(t.lst =& null) ret t end if do t :: t.lst end while end func +func add(key: int, value: int) do me.root :: me.addSub(me.root, null, key, value) end func func addSub(t: @Node, parent: @Node, key: int, value: int): @Node if(t =& null) var a: @Node do me.change :: true if(parent =& null) do a :: (#@Node).init(key, value, null, null) elif(key < parent.key) do a :: (#@Node).init(key, value, parent.prev, parent) if(parent.prev <>& null) do parent.prev.next :: a end if do parent.prev :: a elif(key > parent.key) do a :: (#@Node).init(key, value, parent, parent.next) if(parent.next <>& null) do parent.next.prev :: a end if do parent.next :: a end if do me.num :+ 1 ret a elif(key < t.key) do t.lst :: me.addSub(t.lst, t, key, value) ret me.balanceL(t) elif(key > t.key) do t.rst :: me.addSub(t.rst, t, key, value) ret me.balanceR(t) else do me.change :: false do t.value :: value ret t end if end func +func del(key: int) do me.root :: me.delSub(me.root, key) end func func delSub(t: @Node, key: int): @Node if(t =& null) do me.change :: false ret null elif(key < t.key) do t.lst :: me.delSub(t.lst, key) ret me.balanceR(t) elif(key > t.key) do t.rst :: me.delSub(t.rst, key) ret me.balanceL(t) else do me.num :- 1 if(t.next <>& null) do t.next.prev :: t.prev end if if(t.prev <>& null) do t.prev.next :: t.next end if if(t.lst =& null) do me.change :: true ret t.rst else do t.lst :: me.delSubMax(t.lst) do t.key :: me.lMax do t.value :: me.lMaxValue ret me.balanceR(t) end if end if end func func delSubMax(t: @Node): @Node if(t.rst <>& null) do t.rst :: me.delSubMax(t.rst) ret me.balanceL(t) else do me.change :: true do me.lMax :: t.key do me.lMaxValue :: t.value ret t.lst end if end func +func find(key: int): @Node var t: @Node :: me.root while loop(t <>& null) if(key < t.key) do t :: t.lst elif(key > t.key) do t :: t.rst else break loop end if end while ret t end func +func exist(key: int): bool ret me.find(key) <>& null end func +func get(key: int): int var t: @Node :: me.find(key) ret t =& null ?(0, t.value) end func +func lower_bound(key: int): @Node var t: @Node :: me.root if(t =& null) ret null end if while(true) if(key < t.key) if(t.lst =& null) ret t end if do t :: t.lst elif(key > t.key) if(t.rst =& null) ret t.next end if do t :: t.rst else ret t end if end while end func func height(t: @Node): int ret t =& null ?(0, t.height) end func func bias(t: @Node): int ret me.height(t.lst) - me.height(t.rst) end func func modHeight(t: @Node) do t.height :: 1 + lib@max(me.height(t.lst), me.height(t.rst)) end func func rotateL(v: @Node): @Node var u: @Node :: v.rst var t: @Node :: u.lst do u.lst :: v do v.rst :: t ret u end func func rotateR(u: @Node): @Node var v: @Node :: u.lst var t: @Node :: v.rst do v.rst :: u do u.lst :: t ret v end func func rotateLR(t: @Node): @Node do t.lst :: me.rotateL(t.lst) ret me.rotateR(t) end func func rotateRL(t: @Node): @Node do t.rst :: me.rotateR(t.rst) ret me.rotateL(t) end func func balanceL(t: @Node): @Node if(!me.change) ret t end if var h: int :: me.height(t) if(me.bias(t) = 2) if(me.bias(t.lst) >= 0) do t :: me.rotateR(t) else do t :: me.rotateLR(t) end if else do me.modHeight(t) end if do me.change :: h <> me.height(t) ret t end func func balanceR(t: @Node): @Node if(!me.change) ret t end if var h: int :: me.height(t) if(me.bias(t) = -2) if(me.bias(t.rst) <= 0) do t :: me.rotateL(t) else do t :: me.rotateRL(t) end if else do me.modHeight(t) end if do me.change :: h <> me.height(t) ret t end func end class