#include #ifdef DEBUG #include #else #define dump(...) ((void)0) #endif template bool chmin(T &a, const U &b) { return (a > b ? a = b, true : false); } template bool chmax(T &a, const U &b) { return (a < b ? a = b, true : false); } template void fill_array(T (&a)[N], const U &v) { std::fill((U *) a, (U *) (a + N), v); } template auto make_vector(const std::array &a, T value = T()) { static_assert(I >= 1); static_assert(N >= 1); if constexpr (I == 1) { return std::vector(a[N - I], value); } else { return std::vector(a[N - I], make_vector(a, value)); } } template std::ostream &operator<<(std::ostream &s, const std::vector &a) { for (auto it = a.begin(); it != a.end(); ++it) { if (it != a.begin()) s << " "; s << *it; } return s; } template std::istream &operator>>(std::istream &s, std::vector &a) { for (auto &x : a) s >> x; return s; } std::string YesNo(bool value) { return value ? "Yes" : "No"; } std::string YESNO(bool value) { return value ? "YES" : "NO"; } std::string yesno(bool value) { return value ? "yes" : "no"; } template void putl(const T &value) { std::cout << value << "\n"; } template void putl(const Head head, const Tail &... tail) { std::cout << head << " "; putl(tail...); } namespace haar_lib { template struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template struct graph { using weight_type = T; using edge_type = edge; std::vector>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template using tree = graph; } // namespace haar_lib namespace haar_lib { template auto dijkstra(const graph &graph, int src, int dst) { using P = std::pair; const int n = graph.size(); std::vector> dist(n); std::vector restore(n, -1); std::vector check(n, false); std::priority_queue, std::greater

> pq; dist[src] = 0; pq.emplace(0, src); while (not pq.empty()) { const auto [d, i] = pq.top(); pq.pop(); if (check[i]) continue; check[i] = true; for (auto &e : graph[i]) { if (not dist[e.to]) { dist[e.to] = d + e.cost; restore[e.to] = i; pq.emplace(*dist[e.to], e.to); } else { if (*dist[e.to] > d + e.cost) { dist[e.to] = d + e.cost; restore[e.to] = i; if (not check[e.to]) pq.emplace(*dist[e.to], e.to); } } } } std::vector path; if (dist[dst]) { int cur = dst; while (cur != -1) { path.push_back(cur); cur = restore[cur]; } std::reverse(path.begin(), path.end()); } return std::make_pair(dist[dst], path); } } // namespace haar_lib namespace haar_lib {} namespace solver { using namespace haar_lib; constexpr int m1000000007 = 1000000007; constexpr int m998244353 = 998244353; void init() { std::cin.tie(0); std::ios::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(12); std::cerr << std::fixed << std::setprecision(12); std::cin.exceptions(std::ios_base::failbit); } constexpr int in = 0; constexpr int out = 1; void solve() { int N, S, T, K; std::cin >> N >> S >> T >> K; --S, --T; std::vector X(N); std::cin >> X; int M; std::cin >> M; std::vector A(M), B(M), Y(M); for (int i = 0; i < M; ++i) { std::cin >> A[i] >> B[i] >> Y[i]; --A[i], --B[i]; } graph g(N * K * 2); auto index = make_vector({N, K, 2}); auto rindex = std::vector(N * K * 2); { int k = 0; for (int i = 0; i < N; ++i) { for (int j = 0; j < K; ++j) { rindex[k] = i; index[i][j][in] = k++; index[i][j][out] = k++; } } } for (int i = 0; i < N; ++i) { for (int j = 0; j < K; ++j) { g.add_edge(index[i][j][in], index[i][j][out], X[i]); } } for (int i = 0; i < M; ++i) { for (int j = 0; j < K - 1; ++j) { g.add_edge(index[A[i]][j][out], index[B[i]][j + 1][in], Y[i]); } g.add_edge(index[A[i]][K - 1][out], index[B[i]][K - 1][in], Y[i]); } auto [dist, path] = dijkstra(g, index[S][0][in], index[T][K - 1][out]); if (dist) { std::cout << "Possible\n"; std::cout << *dist << "\n"; std::vector p; for (int i = 0; i < (int) path.size(); i += 2) { p.push_back(rindex[path[i]] + 1); } std::cout << p.size() << "\n" << p << "\n"; } else { std::cout << "Impossible\n"; } } } int main() { solver::init(); while (true) { try { solver::solve(); std::cout << std::flush; std::cerr << std::flush; } catch (const std::istream::failure &e) { break; } catch (...) { break; } } return 0; }