#include #include #include #include #include #include #include #include #include static const int MOD = 998244353; using ll = long long; using u32 = unsigned; using u64 = unsigned long long; using namespace std; template constexpr T INF = ::numeric_limits::max() / 32 * 15 + 208; constexpr int ntt_mod = 998244353, ntt_root = 3; // 1012924417 -> 5, 924844033 -> 5 // 998244353 -> 3, 897581057 -> 3 // 645922817 -> 3; template struct modint { u32 val; public: static modint raw(int v) { modint x; x.val = v; return x; } modint() : val(0) {} template modint(T v) { ll x = (ll)(v%(ll)(M)); if (x < 0) x += M; val = u32(x); } modint(bool v) { val = ((unsigned int)(v) % M); } modint& operator++() { val++; if (val == M) val = 0; return *this; } modint& operator--() { if (val == 0) val = M; val--; return *this; } modint operator++(int) { modint result = *this; ++*this; return result; } modint operator--(int) { modint result = *this; --*this; return result; } modint& operator+=(const modint& b) { val += b.val; if (val >= M) val -= M; return *this; } modint& operator-=(const modint& b) { val -= b.val; if (val >= M) val += M; return *this; } modint& operator*=(const modint& b) { u64 z = val; z *= b.val; val = (u32)(z % M); return *this; } modint& operator/=(const modint& b) { return *this = *this * b.inv(); } modint operator+() const { return *this; } modint operator-() const { return modint() - *this; } modint pow(long long n) const { modint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } modint inv() const { return pow(M-2); } friend modint operator+(const modint& a, const modint& b) { return modint(a) += b; } friend modint operator-(const modint& a, const modint& b) { return modint(a) -= b; } friend modint operator*(const modint& a, const modint& b) { return modint(a) *= b; } friend modint operator/(const modint& a, const modint& b) { return modint(a) /= b; } friend bool operator==(const modint& a, const modint& b) { return a.val == b.val; } friend bool operator!=(const modint& a, const modint& b) { return a.val != b.val; } }; using mint = modint; class Factorial { vector facts, factinv; public: explicit Factorial(int n) : facts(n+1), factinv(n+1) { facts[0] = 1; for (int i = 1; i < n+1; ++i) facts[i] = facts[i-1] * mint(i); factinv[n] = facts[n].inv(); for (int i = n-1; i >= 0; --i) factinv[i] = factinv[i+1] * mint(i+1); } mint fact(int k) const { if(k >= 0) return facts[k]; else return factinv[-k]; } mint operator[](const int &k) const { if(k >= 0) return facts[k]; else return factinv[-k]; } mint C(int p, int q) const { if(q < 0 || p < q) return 0; return facts[p] * factinv[q] * factinv[p-q]; } mint P(int p, int q) const { if(q < 0 || p < q) return 0; return facts[p] * factinv[p-q]; } mint H(int p, int q) const { if(p < 0 || q < 0) return 0; return q == 0 ? 1 : C(p+q-1, q); } }; using mint = modint; class NTT { static constexpr int max_base = 20, maxN = 1 << max_base; // N <= 524288 * 2 mint roots[maxN << 1], iroots[maxN << 1]; public: NTT() { for (int i = 0; i <= max_base; ++i) { const int offset = (1 << i) - 1; const mint g = mint(ntt_root).pow((ntt_mod)/(1 << i)), ginv = g.inv(); mint x = 1, y = 1; for (int j = 0; j < 1 << i; ++j) { roots[offset+j] = x; x *= g; iroots[offset+j] = y; y *= ginv; } } } void transform(vector &a, int sign){ const int n = a.size(); if(!sign){ // fft for(int k = n >> 1; k >= 1; k >>= 1){ for (int i = 0; i < n; i += k << 1) { for (int j = 0; j < k; ++j) { const mint tmp = a[i+j]-a[i+j+k]; a[i+j] += a[i+j+k]; a[i+j+k] = tmp*roots[(k << 1)-1+j]; } } } }else { // ifft for(int k = 1; k <= (n >> 1); k <<= 1){ for (int i = 0; i < n; i += k << 1) { for (int j = 0; j < k; ++j) { a[i+j+k] *= iroots[(k << 1)-1+j]; const mint tmp = a[i+j]-a[i+j+k]; a[i+j] += a[i+j+k]; a[i+j+k] = tmp; } } } const mint x = mint(n).inv(); for (auto &&i : a) i *= x; } } }; NTT ntt; struct poly { vector v; poly() = default; explicit poly(int n) : v(n) {}; explicit poly(vector vv) : v(std::move(vv)) {}; int size() const {return (int)v.size(); } poly cut(int len){ if(len < v.size()) v.resize(static_cast(len)); return *this; } inline mint& operator[] (int i) {return v[i]; } poly& operator+=(const poly &a) { this->v.resize(max(size(), a.size())); for (int i = 0; i < a.size(); ++i) this->v[i] += a.v[i]; return *this; } poly& operator-=(const poly &a) { this->v.resize(max(size(), a.size())); for (int i = 0; i < a.size(); ++i) this->v[i] -= a.v[i]; return *this; } poly& operator*=(poly a) { int N = size()+a.size()-1; int sz = 1; while(sz < N) sz <<= 1; this->v.resize(sz); a.v.resize(sz); ntt.transform(this->v, 0); ntt.transform(a.v, 0); for(int i = 0; i < sz; ++i) this->v[i] *= a.v[i]; ntt.transform(this->v, 1); this->v.resize(N); return *this; } poly& operator/=(const poly &a){ return (*this *= a.inv()); } poly operator+(const poly &a) const { return poly(*this) += a; } poly operator-(const poly &a) const { return poly(*this) -= a; } poly operator*(const poly &a) const { return poly(*this) *= a; } poly inv() const { int n = size(); poly r(1); r[0] = (this->v[0]).inv(); int k = 1; while(k < n){ k *= 2; poly ff(k); for (int i = 0; i < min(k, n); ++i) { ff[i] = this->v[i]; } poly nr = (r*r*ff).cut(k); for (int i = 0; i < k/2; ++i) { nr[i] = (r[i]+r[i]-nr[i]); nr[i+k/2] = -nr[i+k/2]; } r = nr; } r.v.resize(n); return r; } }; int main() { int n, q; cin >> n >> q; vector k(q), a(q), b(q), s(q), t(q); for (int i = 0; i < q; ++i) { cin >> k[i] >> a[i] >> b[i] >> s[i] >> t[i]; } vector z(k); sort(z.begin(), z.end()); z.erase(unique(z.begin(), z.end()), z.end()); for (int i = 0; i < q; ++i) { k[i] = lower_bound(z.begin(),z.end(), k[i]) - z.begin(); } int m = z.size(); vector v(m); for (auto &&i : v) i.v.resize(6001, 1); poly p(6001); p[0] = 1; for (int i = 1; i <= 6000; ++i) { p[i] = p[i-1]*(n+i-1)/mint(i); } int zero = 1; for (int i = 0; i < q; ++i) { p /= v[k[i]]; p.cut(6001); for (int j = a[i]; j <= b[i]; ++j) { v[k[i]][j] = 0; } p *= v[k[i]]; p.cut(6001); mint ans = 0; for (int j = s[i]; j <= t[i]; ++j) ans += p[j]; cout << ans.val << "\n"; } return 0; }