/* author: Kite_kuma created: 2021.06.18 21:19:48 */ // #ifdef LOCAL // #define _GLIBCXX_DEBUG // #endif #include using namespace std; #pragma region macros #define foa(s, v) for(auto &s : v) #define all(v) (v).begin(), (v).end() #define rall(v) (v).rbegin(), (v).rend() #define popcnt(n) __builtin_popcountll((long long)n) #define REPname(a, b, c, d, e, ...) e #define rep(...) REPname(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__) #define REP0(x) for(int Counter_in_rep_macro = 0; Counter_in_rep_macro < (x); ++Counter_in_rep_macro) #define REP1(i, x) for(int i = 0; i < (x); ++i) #define REP2(i, l, r) for(int i = (l); i < (r); ++i) #define REP3(i, l, r, c) for(int i = (l); i < (r); i += (c)) #define DREPname(a, b, c, d, e, ...) e #define drep(...) DREPname(__VA_ARGS__, DREP3, DREP2, DREP1)(__VA_ARGS__) #define DREP1(i, x) for(int i = (x)-1; i >= 0; --i) #define DREP2(i, l, r) for(int i = (r)-1; i >= (l); --i) #define DREP3(i, l, r, c) for(int i = (r)-1; i >= (l); i -= (c)) #pragma endregion #pragma region aliases using ll = long long; using ld = long double; using ull = unsigned long long; using vi = std::vector; using vvi = std::vector>; using vvvi = std::vector>>; using vll = std::vector; using vvll = std::vector; using vvvll = std::vector; using pii = std::pair; using pll = std::pair; template using V = std::vector; template using VV = V>; template using VVV = V>>; template using pqup = std::priority_queue, std::greater>; template using pqdn = std::priority_queue; #pragma endregion #pragma region constants const int inf = 1e9; const long long INF = 1e18; const long double pi = acos(-1); const char dl = '\n'; const char sp = ' '; int dx[8] = {1, 0, -1, 0, 1, -1, -1, 1}; int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1}; const int mod_1000000007 = 1000000007; const int mod_998244353 = 998244353; #pragma endregion #pragma region basic_operation template inline bool in_range(T0 x, T1 lef, T2 rig) { return ((lef <= x) && (x < rig)); } template inline bool chmin(T &a, T b) { if(a > b) { a = b; return true; } return false; } template inline bool chmax(T &a, T b) { if(a < b) { a = b; return true; } return false; } void Yes(bool f = 1) { std::cout << (f ? "Yes" : "No") << '\n'; } void No() { std::cout << "No\n"; } void YES(bool f = 1) { std::cout << (f ? "YES" : "NO") << '\n'; } void NO() { std::cout << "NO\n"; } template void drop(T answer) { std::cout << answer << '\n'; exit(0); } void err(bool flag = true) { if(!flag) return; std::cout << -1 << '\n'; exit(0); } template void vout(std::vector const &v, bool vertically = 0) { if(vertically) { for(auto const &a : v) { std::cout << a << '\n'; } return; } for(auto it = v.begin(); it != v.end(); it++) { std::cout << (*it); if(it != v.end() - 1) { std::cout << ' '; } } std::cout << '\n'; return; } inline void print() { std::cout << '\n'; } template inline void print(T x) { std::cout << x << '\n'; return; } template void print(Head H, Tail... T) { std::cout << H << " "; print(T...); } template void add(std::vector &v, T val) { for(auto &a : v) a += val; return; } template T dup(T a, T b) { assert(b != 0); return (a + b - 1) / b; } template T greatest_lower_multiple(T x, T d) { if(d == 0) return 0; if(d < 0) d *= -1; T y = x % d; if(y < 0) y += d; return x - y; } template T least_upper_multiple(T x, T d) { return -greatest_lower_multiple(-x, d); } long long POW(long long a, long long n) { long long res = 1; while(n > 0) { if(n & 1) res = res * a; a = a * a; n >>= 1; } return res; } long long modpow(long long a, long long n, long long mod) { // a^n mod assert(n >= 0 && mod); if(mod == 1) return 0LL; long long res = 1; while(n > 0) { if(n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res < 0 ? res + mod : res; } // return x which satisfies a * x % mod == gcd(a, mod) // not (mod | a) long long modinv(long long a, long long mod) { long long b = mod, u = 1, v = 0; while(b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } u %= mod; if(u < 0) u += mod; return u; } template int lb(const std::vector &a, const T x) { return std::distance(a.begin(), std::lower_bound(a.begin(), a.end(), x)); } template int ub(const std::vector &a, const T x) { return std::distance(a.begin(), std::upper_bound(a.begin(), a.end(), x)); } template void unq_sort(std::vector &a) { std::sort(a.begin(), a.end()); a.erase(std::unique(a.begin(), a.end()), a.end()); } template std::vector press(std::vector &a) { auto vec = a; unq_sort(vec); std::vector ret; for(auto &v : a) ret.push_back(lb(vec, v)); return ret; } #pragma endregion #pragma region input #define VEC(type, name, size) \ vector name(size); \ scanner::INPUT(name) #define VVEC(type, name, h, w) \ vector> name(h, vector(w)); \ scanner::INPUT(name) #define INT(...) \ int __VA_ARGS__; \ scanner::INPUT(__VA_ARGS__) #define LL(...) \ long long __VA_ARGS__; \ scanner::INPUT(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ scanner::INPUT(__VA_ARGS__) #define CHR(...) \ char __VA_ARGS__; \ scanner::INPUT(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ scanner::INPUT(__VA_ARGS__) #define LD(...) \ long double __VA_ARGS__; \ scanner::INPUT(__VA_ARGS__) #define TPL3(type0, type1, type2, name) \ std::tuple name; \ scanner::INPUT(name); #define TPL4(type0, type1, type2, type3, name) \ std::tuple name; \ scanner::INPUT(name); namespace scanner { template void scan(T &a) { std::cin >> a; } template void scan(std::pair &p) { scan(p.first); scan(p.second); } template void scan(std::tuple &p) { T0 t0; T1 t1; T2 t2; scan(t0); scan(t1); scan(t2); p = std::make_tuple(t0, t1, t2); } template void scan(std::tuple &p) { T0 t0; T1 t1; T2 t2; T3 t3; scan(t0); scan(t1); scan(t2); scan(t3); p = std::make_tuple(t0, t1, t2, t3); } template void scan(std::vector &a) { for(auto &i : a) scan(i); } void INPUT() {} template void INPUT(Head &head, Tail &... tail) { scan(head); INPUT(tail...); } } // namespace scanner template std::istream &operator>>(std::istream &is, std::pair &p) { is >> p.first >> p.second; return is; } #pragma endregion #pragma region debug #pragma region output template std::ostream &std::operator<<(std::ostream &os, const std::pair &p) { os << p.first << " " << p.second; return os; } template std::ostream &std::operator<<(std::ostream &os, const std::vector &v) { for(int i = 0; i < (int)v.size(); i++) { if(i) os << " "; os << v[i]; } return os; } #pragma endregion #pragma region view namespace viewer { void view(const long long e) { if(e == INF) std::cerr << "INF"; else if(e == -INF) std::cerr << "-INF"; else std::cerr << e; } void view(const int e) { if(e == inf) std::cerr << "inf"; else if(e == -inf) std::cerr << "-inf"; else std::cerr << e; } template void view(const T e) { std::cerr << e; } template void view(const std::pair &p) { std::cerr << "("; view(p.first); std::cerr << ", "; view(p.second); std::cerr << ")"; } template void view(const std::tuple &p) { std::cerr << "("; view(std::get<0>(p)); std::cerr << ", "; view(std::get<1>(p)); std::cerr << ", "; view(std::get<2>(p)); std::cerr << ")"; } template void view(const std::tuple &p) { std::cerr << "("; view(std::get<0>(p)); std::cerr << ", "; view(std::get<1>(p)); std::cerr << ", "; view(std::get<2>(p)); std::cerr << ", "; view(std::get<3>(p)); std::cerr << ")"; } template void view(const std::set &s) { if(s.empty()) { std::cerr << "{ }"; return; } std::cerr << "{ "; for(auto &t : s) { view(t); std::cerr << ", "; } std::cerr << "\b\b }"; } template void view(const std::unordered_set &s) { if(s.empty()) { std::cerr << "{ }"; return; } std::cerr << "{ "; for(auto &t : s) { view(t); std::cerr << ", "; } std::cerr << "\b\b }"; } template void view(const std::vector &v) { if(v.empty()) { std::cerr << "{ }"; return; } std::cerr << "{ "; for(const auto &e : v) { view(e); std::cerr << ", "; } std::cerr << "\b\b }"; } template void view(const std::vector> &vv) { std::cerr << "{\n"; for(const auto &v : vv) { std::cerr << "\t"; view(v); std::cerr << '\n'; } std::cerr << "}"; } template void view(const std::vector> &v) { std::cerr << "{\n"; for(const auto &c : v) { std::cerr << "\t("; view(c.first); std::cerr << ", "; view(c.second); std::cerr << ")\n"; } std::cerr << "}"; } template void view(const std::vector> &v) { if(v.empty()) { std::cerr << "{ }"; return; } std::cerr << '{'; for(const auto &t : v) { std::cerr << "\n\t"; view(t); std::cerr << ","; } std::cerr << "\n}"; } template void view(const std::vector> &v) { if(v.empty()) { std::cerr << "{ }"; return; } std::cerr << '{'; for(const auto &t : v) { std::cerr << "\n\t"; view(t); std::cerr << ","; } std::cerr << "\n}"; } template void view(const std::map &m) { std::cerr << "{\n"; for(const auto &t : m) { std::cerr << "\t["; view(t.first); std::cerr << "] : "; view(t.second); std::cerr << '\n'; } std::cerr << "}"; } template void view(const std::unordered_map &m) { std::cerr << "{\n"; for(const auto &t : m) { std::cerr << "\t["; view(t.first); std::cerr << "] : "; view(t.second); std::cerr << '\n'; } std::cerr << "}"; } } // namespace viewer #pragma endregion // when debugging : g++ foo.cpp -DLOCAL #ifdef LOCAL void debug_out() {} template void debug_out(Head H, Tail... T) { viewer::view(H); std::cerr << ", "; debug_out(T...); } #define debug(...) \ do { \ std::cerr << __LINE__ << " [" << #__VA_ARGS__ << "] : ["; \ debug_out(__VA_ARGS__); \ std::cerr << "\b\b]\n"; \ } while(0) #define dump(x) \ do { \ std::cerr << __LINE__ << " " << #x << " : "; \ viewer::view(x); \ std::cerr << '\n'; \ } while(0) #else #define debug(...) (void(0)) #define dump(x) (void(0)) #endif #pragma endregion #pragma region modint const int mod = mod_998244353; template struct ModInt { int x; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(long long n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { long long t; is >> t; a = ModInt(t); return (is); } static int get_mod() { return mod; } }; using mint = ModInt; #pragma endregion #pragma region union_find struct UF { private: std::vector data; // data[root] = -size, data[not_root] = parent public: int components; // number of components UF(int N) : data(N, -1), components(N) {} int root(int x) { if(data[x] < 0) return x; return data[x] = root(data[x]); } bool same(int x, int y) { return root(x) == root(y); } bool unite(int x, int y) { // merge x and y x = root(x); y = root(y); if(x == y) return false; components--; if(data[x] > data[y]) std::swap(x, y); // balancing data[x] += data[y]; data[y] = x; return true; } int size(int x) { return -data[root(x)]; } std::vector> groups() { std::vector> g(data.size()), ret; for(size_t i = 0; i < data.size(); i++) g[root(i)].push_back((int)i); for(auto &vec : g) if(!vec.empty()) ret.push_back(vec); return ret; } }; #pragma endregion #pragma region graph struct Edge { int to; long long cost; Edge() = default; Edge(int to_, long long cost_) : to(to_), cost(cost_) {} bool operator<(const Edge &a) const { return cost < a.cost; } bool operator>(const Edge &a) const { return cost > a.cost; } friend std::ostream &operator<<(std::ostream &s, Edge &a) { s << "to: " << a.to << ", cost: " << a.cost; return s; } }; class Graph { std::vector> edges; public: inline const std::vector &operator[](int k) const { return edges[k]; } inline std::vector &operator[](int k) { return edges[k]; } int size() const { return edges.size(); } void resize(const int n) { edges.resize(n); } Graph() = default; Graph(int n) : edges(n) {} Graph(int n, int e, bool weight = 0, bool directed = 0, int idx = 1) : edges(n) { input(e, weight, directed, idx); } const long long INF = 3e18; void input(int e = -1, bool weight = 0, bool directed = false, int idx = 1) { if(e == -1) e = size() - 1; while(e--) { int u, v; long long cost = 1; std::cin >> u >> v; if(weight) std::cin >> cost; u -= idx, v -= idx; edges[u].emplace_back(v, cost); if(!directed) edges[v].emplace_back(u, cost); } } void add_edge(int u, int v, long long cost = 1, bool directed = false, int idx = 0) { u -= idx, v -= idx; edges[u].emplace_back(v, cost); if(!directed) edges[v].emplace_back(u, cost); } // Ο(V+E) std::vector bfs(int s) { std::vector dist(size(), INF); std::queue que; dist[s] = 0; que.push(s); while(!que.empty()) { int v = que.front(); que.pop(); for(auto &e : edges[v]) { if(dist[e.to] != INF) continue; dist[e.to] = dist[v] + e.cost; que.push(e.to); } } return dist; } // Ο(V+E) // constraint: cost of each edge is zero or one std::vector zero_one_bfs(int s) { std::vector dist(size(), INF); std::deque deq; dist[s] = 0; deq.push_back(s); while(!deq.empty()) { int v = deq.front(); deq.pop_front(); for(auto &e : edges[v]) { assert(0LL <= e.cost and e.cost < 2LL); if(e.cost and dist[e.to] > dist[v] + 1) { dist[e.to] = dist[v] + 1; deq.push_back(e.to); } else if(!e.cost and dist[e.to] > dist[v]) { dist[e.to] = dist[v]; deq.push_front(e.to); } } } return dist; } // Ο((E+V)logV) // cannot reach: INF std::vector dijkstra(int s) { // verified std::vector dist(size(), INF); const auto compare = [](const std::pair &a, const std::pair &b) { return a.first > b.first; }; std::priority_queue, std::vector>, decltype(compare)> que{compare}; dist[s] = 0; que.emplace(0, s); while(!que.empty()) { std::pair p = que.top(); que.pop(); int v = p.second; if(dist[v] < p.first) continue; for(auto &e : edges[v]) { if(dist[e.to] > dist[v] + e.cost) { dist[e.to] = dist[v] + e.cost; que.emplace(dist[e.to], e.to); } } } return dist; } // Ο(VE) // cannot reach: INF // negative cycle: -INF std::vector bellman_ford(int s) { // verified int n = size(); std::vector res(n, INF); res[s] = 0; for(int loop = 0; loop < n - 1; loop++) { for(int v = 0; v < n; v++) { if(res[v] == INF) continue; for(auto &e : edges[v]) { res[e.to] = std::min(res[e.to], res[v] + e.cost); } } } std::queue que; std::vector chk(n); for(int v = 0; v < n; v++) { if(res[v] == INF) continue; for(auto &e : edges[v]) { if(res[e.to] > res[v] + e.cost and !chk[e.to]) { que.push(e.to); chk[e.to] = 1; } } } while(!que.empty()) { int now = que.front(); que.pop(); for(auto &e : edges[now]) { if(!chk[e.to]) { chk[e.to] = 1; que.push(e.to); } } } for(int i = 0; i < n; i++) if(chk[i]) res[i] = -INF; return res; } // Ο(V^3) std::vector> warshall_floyd() { // verified int n = size(); std::vector> dist(n, std::vector(n, INF)); for(int i = 0; i < n; i++) dist[i][i] = 0; for(int i = 0; i < n; i++) for(auto &e : edges[i]) dist[i][e.to] = std::min(dist[i][e.to], e.cost); for(int k = 0; k < n; k++) for(int i = 0; i < n; i++) { if(dist[i][k] == INF) continue; for(int j = 0; j < n; j++) { if(dist[k][j] == INF) continue; dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]); } } return dist; } // Ο(V) (using DFS) // if a directed cycle exists, return {} std::vector topological_sort() { // verified std::vector res; int n = size(); std::vector used(n, 0); bool not_DAG = false; auto dfs = [&](auto self, int k) -> void { if(not_DAG) return; if(used[k]) { if(used[k] == 1) not_DAG = true; return; } used[k] = 1; for(auto &e : edges[k]) self(self, e.to); used[k] = 2; res.push_back(k); }; for(int i = 0; i < n; i++) dfs(dfs, i); if(not_DAG) return std::vector{}; std::reverse(res.begin(), res.end()); return res; } bool is_DAG() { return !topological_sort().empty(); } // verified // Ο(V) // array of the distance from each vertex to the most distant vertex std::vector height() { // verified auto vec1 = bfs(0); int v1 = -1, v2 = -1; long long dia = -1; for(int i = 0; i < int(size()); i++) if(dia < vec1[i]) dia = vec1[i], v1 = i; vec1 = bfs(v1); dia = -1; for(int i = 0; i < int(size()); i++) if(dia < vec1[i]) dia = vec1[i], v2 = i; auto vec2 = bfs(v2); for(int i = 0; i < int(size()); i++) { if(vec1[i] < vec2[i]) vec1[i] = vec2[i]; } return vec1; } // O(V+E) // vector<(int)(0 or 1)> // if it is not bipartite, return {} std::vector bipartite_grouping() { std::vector colors(size(), -1); auto dfs = [&](auto self, int now, int col) -> bool { colors[now] = col; for(auto &e : edges[now]) { if(col == colors[e.to]) return false; if(colors[e.to] == -1 and !self(self, e.to, !col)) return false; } return true; }; for(int i = 0; i < int(size()); i++) if(!colors[i] and !dfs(dfs, i, 0)) return std::vector{}; return colors; } bool is_bipartite() { return !bipartite_grouping().empty(); } // Ο(V+E) // ((v1, v2), diameter) std::pair, long long> diameter() { // verified auto vec = bfs(0); int v1 = -1, v2 = -1; long long dia = -1; for(int i = 0; i < int(size()); i++) if(dia < vec[i]) dia = vec[i], v1 = i; vec = bfs(v1); dia = -1; for(int i = 0; i < int(size()); i++) if(dia < vec[i]) dia = vec[i], v2 = i; std::pair, long long> res = {{v1, v2}, dia}; return res; } // Ο(ElogV) long long prim() { // verified long long res = 0; std::priority_queue, std::greater> que; for(auto &e : edges[0]) que.push(e); std::vector chk(size()); chk[0] = 1; int cnt = 1; while(cnt < size()) { auto e = que.top(); que.pop(); if(chk[e.to]) continue; cnt++; res += e.cost; chk[e.to] = 1; for(auto &e2 : edges[e.to]) que.push(e2); } return res; } // Ο(ElogE) long long kruskal() { // verified std::vector> Edges; for(int i = 0; i < int(size()); i++) for(auto &e : edges[i]) Edges.emplace_back(i, e.to, e.cost); std::sort(Edges.begin(), Edges.end(), [](const std::tuple &a, const std::tuple &b) { return std::get<2>(a) < std::get<2>(b); }); std::vector uf_data(size(), -1); auto root = [&uf_data](auto self, int x) -> int { if(uf_data[x] < 0) return x; return uf_data[x] = self(self, uf_data[x]); }; auto unite = [&uf_data, &root](int u, int v) -> bool { u = root(root, u), v = root(root, v); if(u == v) return false; if(uf_data[u] > uf_data[v]) std::swap(u, v); uf_data[u] += uf_data[v]; uf_data[v] = u; return true; }; long long ret = 0; for(auto &e : Edges) if(unite(std::get<0>(e), std::get<1>(e))) ret += std::get<2>(e); return ret; } // O(V) std::vector centroid() { int n = size(); std::vector centroid, sz(n); auto dfs = [&](auto self, int now, int per) -> void { sz[now] = 1; bool is_centroid = true; for(auto &e : edges[now]) { if(e.to != per) { self(self, e.to, now); sz[now] += sz[e.to]; if(sz[e.to] > n / 2) is_centroid = false; } } if(n - sz[now] > n / 2) is_centroid = false; if(is_centroid) centroid.push_back(now); }; dfs(dfs, 0, -1); return centroid; } // Ο(V+E) // directed graph from root to leaf Graph root_to_leaf(int root = 0) { Graph res(size()); std::vector chk(size(), 0); chk[root] = 1; auto dfs = [&](auto self, int now) -> void { for(auto &e : edges[now]) { if(chk[e.to] == 1) continue; chk[e.to] = 1; res.add_edge(now, e.to, e.cost, 1, 0); self(self, e.to); } }; dfs(dfs, root); return res; } // Ο(V+E) // directed graph from leaf to root Graph leaf_to_root(int root = 0) { Graph res(size()); std::vector chk(size(), 0); chk[root] = 1; auto dfs = [&](auto self, int now) -> void { for(auto &e : edges[now]) { if(chk[e.to] == 1) continue; chk[e.to] = 1; res.add_edge(e.to, now, e.cost, 1, 0); self(self, e.to); } }; dfs(dfs, root); return res; } // long long Chu_Liu_Edmonds(int root = 0) {} }; struct tree_doubling { private: std::vector> parent; std::vector depth; std::vector dist; int max_jump = 1; void build() { for(int i = 0; i < max_jump - 1; i++) { for(int v = 0; v < (int)dist.size(); v++) { if(parent[i][v] == -1) parent[i + 1][v] = -1; else parent[i + 1][v] = parent[i][parent[i][v]]; } } } public: tree_doubling() = default; tree_doubling(const Graph &g, const int root = 0) : dist(g.size()), depth(g.size()) { int n = g.size(); while((1 << max_jump) < n) max_jump++; parent.assign(max_jump, std::vector(n, -1)); auto dfs = [&](auto self, int now, int per, int d, long long cost) -> void { parent[0][now] = per; depth[now] = d; dist[now] = cost; for(auto &e : g[now]) if(e.to != per) self(self, e.to, now, d + 1, cost + e.cost); }; dfs(dfs, root, -1, 0, 0LL); build(); } int lowest_common_ancestor(int u, int v) { if(depth[u] < depth[v]) std::swap(u, v); int k = parent.size(); for(int i = 0; i < k; i++) if((depth[u] - depth[v]) >> i & 1) u = parent[i][u]; if(u == v) return u; for(int i = k - 1; i >= 0; i--) if(parent[i][u] != parent[i][v]) u = parent[i][u], v = parent[i][v]; return parent[0][u]; } long long length_of_path(const int u, const int v) { return dist[u] + dist[v] - dist[lowest_common_ancestor(u, v)] * 2; } int level_ancestor(int v, int level) { assert(level >= 0); for(int jump = 0; jump < max_jump and level; jump++) { if(level & 1) v = parent[jump][v]; level >>= 1; } return v; } }; struct strongly_connected_components { private: enum { CHECKED = -1, UNCHECKED = -2 }; const Graph &graph_given; Graph graph_reversed; std::vector order, group_number; /* at the beginning of the building, 'group_number' is used as 'checked' */ void dfs(int now) { if(group_number[now] != UNCHECKED) return; group_number[now] = CHECKED; for(auto &e : graph_given[now]) dfs(e.to); order.push_back(now); } void rdfs(int now, int group_count) { if(group_number[now] != UNCHECKED) return; group_number[now] = group_count; for(auto &e : graph_reversed[now]) rdfs(e.to, group_count); } void build(bool create_compressed_graph) { for(int i = 0; i < (int)graph_given.size(); i++) dfs(i); reverse(order.begin(), order.end()); group_number.assign(graph_given.size(), UNCHECKED); int group = 0; for(auto &i : order) if(group_number[i] == UNCHECKED) rdfs(i, group), group++; graph_compressed.resize(group); groups.resize(group); for(int i = 0; i < (int)graph_given.size(); i++) groups[group_number[i]].push_back(i); if(create_compressed_graph) { std::vector edges(group, -1); for(int i = 0; i < group; i++) for(auto &vertex : groups[i]) for(auto &e : graph_given[vertex]) if(group_number[e.to] != i and edges[group_number[e.to]] != i) { edges[group_number[e.to]] = i; graph_compressed[i].emplace_back(group_number[e.to], 1); } } return; } public: std::vector> groups; Graph graph_compressed; strongly_connected_components(const Graph &g_, bool create_compressed_graph = false) : graph_given(g_), graph_reversed(g_.size()), group_number(g_.size(), UNCHECKED) { for(size_t i = 0; i < g_.size(); i++) for(auto &e : graph_given[i]) graph_reversed[e.to].emplace_back(i, 1); build(create_compressed_graph); } const int &operator[](const int k) { return group_number[k]; } }; struct low_link { private: const Graph &graph_given; int order_next; void build() { int n = graph_given.size(); order.resize(n, -1); low.resize(n); order_next = 0; for(int i = 0; i < n; i++) if(order[i] == -1) dfs(i); } void dfs(int now, int par = -1) { low[now] = order[now] = order_next++; bool is_articulation = false; int cnt = 0, cnt_par = 0; for(const auto &ed : graph_given[now]) { const int &nxt = ed.to; if(order[nxt] == -1) { cnt++; dfs(nxt, now); if(order[now] < low[nxt]) bridge.push_back(std::minmax(now, nxt)); if(order[now] <= low[nxt]) is_articulation = true; low[now] = std::min(low[now], low[nxt]); } else if(nxt != par or cnt_par++ == 1) { low[now] = std::min(low[now], order[nxt]); } } if(par == -1 and cnt < 2) is_articulation = false; if(is_articulation) articulation.push_back(now); return; } public: std::vector order, low, articulation; std::vector> bridge; low_link() = default; low_link(const Graph &g_) : graph_given(g_) { build(); } }; struct twoedge_connected_components { private: const Graph &graph_given; int group_next; low_link li; std::vector group_number; void build(bool create_compressed_graph) { int n = graph_given.size(); group_number.resize(n, -1); group_next = 0; for(int i = 0; i < n; i++) if(group_number[i] == -1) dfs(i); groups.resize(group_next); for(int i = 0; i < graph_given.size(); i++) groups[group_number[i]].push_back(i); if(create_compressed_graph) { graph_compressed.resize(group_next); for(const auto &[u, v] : li.bridge) { int x = group_number[u], y = group_number[v]; graph_compressed.add_edge(x, y); } } } void dfs(int now, int par = -1) { if(par != -1 and li.order[par] >= li.low[now]) group_number[now] = group_number[par]; else group_number[now] = group_next++; for(const auto &e : graph_given[now]) if(group_number[e.to] == -1) dfs(e.to, now); } public: Graph graph_compressed; std::vector> groups; twoedge_connected_components(const Graph &g_, bool create_compressed_graph = false) : graph_given(g_), li(g_) { build(create_compressed_graph); } const int &operator[](const int k) { return group_number[k]; } }; struct heavy_light_decomposition { public: std::vector sz, in, out, head, rev, par; private: Graph &g; void dfs_sz(int v, int p = -1) { par[v] = p; if(!g[v].empty() and g[v].front().to == p) std::swap(g[v].front(), g[v].back()); for(auto &e : g[v]) { if(e.to == p) continue; dfs_sz(e.to, v); sz[v] += sz[e.to]; if(sz[g[v].front().to] < sz[e.to]) std::swap(g[v].front(), e); } } void dfs_hld(int v, int &t, int p = -1) { in[v] = t++; rev[in[v]] = v; for(auto &e : g[v]) { if(e.to == p) continue; head[e.to] = (g[v].front().to == e.to ? head[v] : e.to); dfs_hld(e.to, t, v); } out[v] = t; } void build(int root = 0) { dfs_sz(root); int t = 0; head[root] = root; dfs_hld(root, t); } public: heavy_light_decomposition(Graph &g_, int root = 0) : g(g_) { int n = g.size(); sz.resize(n, 1); in.resize(n); out.resize(n); head.resize(n); rev.resize(n); par.resize(n); build(root); } int level_ancestor(int v, int level) { while(true) { int u = head[v]; if(in[v] - level >= in[u]) return rev[in[v] - level]; level -= in[v] - in[u] + 1; v = par[u]; } } int lowest_common_ancestor(int u, int v) { for(;; v = par[head[v]]) { if(in[u] > in[v]) std::swap(u, v); if(head[u] == head[v]) return u; } } // u, v: vertex, unit: unit, q: query on a path, f: binary operation ((T, T) -> T) template T query(int u, int v, const T &unit, const Q &q, const F &f, bool edge = false) { T l = unit, r = unit; for(;; v = par[head[v]]) { if(in[u] > in[v]) std::swap(u, v), std::swap(l, r); if(head[u] == head[v]) break; l = f(q(in[head[v]], in[v] + 1), l); } return f(f(q(in[u] + edge, in[v] + 1), l), r); } // u, v: vertex, q: update query template void add(int u, int v, const Q &q, bool edge = false) { for(;; v = par[head[v]]) { if(in[u] > in[v]) std::swap(u, v); if(head[u] == head[v]) break; q(in[head[v]], in[v] + 1); } q(in[u] + edge, in[v] + 1); } std::pair subtree(int v, bool edge = false) { return std::pair(in[v] + edge, out[v]); } }; #pragma endregion int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(15); srand((unsigned)time(NULL)); INT(n, m); UF uf(n); vvi to(n); rep(m) { INT(u, v); uf.unite(u - 1, v - 1); to[u - 1].push_back(v - 1); } V> ans; foa(group, uf.groups()) { int v = group.size(); map id; rep(i, v) id[group[i]] = i; Graph g(v); foa(vertex, group) { foa(e, to[vertex]) { g.add_edge(id[vertex], id[e], 1LL,true); } } if(g.is_DAG()) { auto res = g.topological_sort(); rep(i, v - 1) { ans.emplace_back(group[res[i]], group[res[i + 1]]); } } else { rep(i, v) { int j = i + 1; if(j == v) j = 0; ans.emplace_back(group[i], group[j]); } } } print(ans.size()); foa(t, ans) { print(t.first + 1, t.second + 1); } return 0; }