import sys input = lambda : sys.stdin.readline().rstrip() sys.setrecursionlimit(2*10**5+10) write = lambda x: sys.stdout.write(x+"\n") debug = lambda x: sys.stderr.write(x+"\n") writef = lambda x: print("{:.12f}".format(x)) n,k = list(map(int, input().split())) M = 998244353 ### 素数の逆元とCombination N = k+10 # 必要なテーブルサイズ g1 = [0] * (N+1) # 元テーブル g2 = [0] * (N+1) #逆元テーブル inverse = [0] * (N+1) #逆元テーブル計算用テーブル g1[0] = g1[1] = g2[0] = g2[1] = 1 inverse[0], inverse[1] = [0, 1] for i in range( 2, N + 1 ): g1[i] = ( g1[i-1] * i ) % M inverse[i] = ( -inverse[M % i] * (M//i) ) % M # ai+b==0 mod M <=> i==-b*a^(-1) <=> i^(-1)==-b^(-1)*aより g2[i] = (g2[i-1] * inverse[i]) % M def cmb(n, r, M=M): if ( r<0 or r>n ): return 0 r = min(r, n-r) return ((g1[n] * g2[r] % M) * g2[n-r]) % M def perm(n, r, M=M): if (r<0 or r>n): return 0 return (g1[n] * g2[n-r]) % M # FFT import numpy as np TYPE = np.int64 M = 998244353 def fft(a,b): l = len(a) + len(b) - 1 l = 1<<((l-1).bit_length()) c = np.fft.irfft((np.fft.rfft(a,l))*(np.fft.rfft(b,l)),l) c = np.rint(c).astype(TYPE) return c def fft_large(a,b): d = 30000 a1, a2 = np.divmod(a,d) b1, b2 = np.divmod(b,d) aa = fft(a1,b1) % M bb = fft(a2,b2) % M cc = (fft(a1+a2, b1+b2) - (aa+bb)) % M h = (((aa*d)%M)*d + cc*d + bb) % M return h def fft_large(a,b): """精度が足りないときはこちら """ d = 1<<10 a1, a2 = np.divmod(a,d*d) a2, a3 = np.divmod(a2,d) b1, b2 = np.divmod(b,d*d) b2, b3 = np.divmod(b2,d) aa = fft(a1,b1) % M bb = fft(a2,b2) % M cc = fft(a3,b3) % M dd = (fft(a1+a2, b1+b2) - (aa+bb)) % M ee = (fft(a2+a3, b2+b3) - (bb+cc)) % M ff = (fft(a1+a3, b1+b3) - (aa+cc)) % M h = (((aa*d*d)%M)*d*d + ((dd*d*d)%M)*d + (bb+ff)*d*d + ee*d + cc) % M return h ans = 0 gg = fft_large(g2,g2) inv2 = pow(2, M-2, M) gg *= inv2 gg %= M gg = gg.tolist() s = 1 for i in range(1,k): ans += s * pow(k-i, n, M) * (perm(k,i) * gg[i] % M) % M ans %= M s *= -1 print(ans)