#define MOD_TYPE 2 #pragma region Macros #include using namespace std; #if 1 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif #if 0 #include #include #include using namespace __gnu_pbds; template using extset = tree, rb_tree_tag, tree_order_statistics_node_update>; #endif #if 0 #include #include using Int = boost::multiprecision::cpp_int; using lld = boost::multiprecision::cpp_dec_float_100; #endif using ll = long long int; using ld = long double; using pii = pair; using pll = pair; using pld = pair; template using smaller_queue = priority_queue, greater>; constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353); constexpr int INF = (int)1e9 + 10; constexpr ll LINF = (ll)4e18; constexpr ld PI = acos(-1.0); constexpr ld EPS = 1e-7; constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0}; constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0}; #define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i) #define rep(i, n) REP(i, 0, n) #define REPI(i, m, n) for (int i = m; i < (int)(n); ++i) #define repi(i, n) REPI(i, 0, n) #define MP make_pair #define MT make_tuple #define YES(n) cout << ((n) ? "YES" : "NO") << "\n" #define Yes(n) cout << ((n) ? "Yes" : "No") << "\n" #define possible(n) cout << ((n) ? "possible" : "impossible") << "\n" #define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n" #define all(v) v.begin(), v.end() #define NP(v) next_permutation(all(v)) #define dbg(x) cerr << #x << ":" << x << "\n"; struct io_init { io_init() { cin.tie(0); ios::sync_with_stdio(false); cout << setprecision(30) << setiosflags(ios::fixed); }; } io_init; template inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; } template inline void Fill(A (&array)[N], const T &val) { fill((T *)array, (T *)(array + N), val); } template constexpr istream &operator>>(istream &is, pair &p) noexcept { is >> p.first >> p.second; return is; } template constexpr ostream &operator<<(ostream &os, pair &p) noexcept { os << p.first << " " << p.second; return os; } #pragma endregion // -------------------------------------- #pragma region WM enum { NOTFOUND = 0xFFFFFFFFFFFFFFFFLLU }; uint64_t NODE_NO = 0; class Node { public: uint64_t no; // node番号 // internal nodeのときに使用 uint64_t num; // 左の子の部分木のもつbitの数 uint64_t ones; // 左の子の部分木のもつ1の数 Node *left; Node *right; int64_t balance; // 右の子の高さ - 左の子の高さ.+なら右の子の方が高い,-なら左の子の方が高い // leafのときに使用 uint64_t bits; // bit uint64_t bits_size; // bitのサイズ(debug用) bool is_leaf; Node(uint64_t bits, uint64_t bits_size, bool is_leaf) : no(NODE_NO++), num(0), ones(0), bits(bits), bits_size(bits_size), is_leaf(is_leaf), left(nullptr), right(nullptr), balance(0) {} }; class DynamicBitVector { public: Node *root; uint64_t size; // 全体のbitの数 uint64_t num_one; // 全体の1の数 const uint64_t bits_size_limit = 32; // 各ノードが管理するbitの長さ制限.2 * bits_size_limit以上になったらノードを分割し, 1/2*bits_size_limit以下になったらノードを結合する DynamicBitVector() : root(nullptr), size(0), num_one(0) {} DynamicBitVector(std::vector &v) : root(nullptr), size(0), num_one(0) { if (v.size() == 0) { return; } std::deque> leaves; for (int i = 0; i < v.size(); i += this->bits_size_limit) { uint64_t bits = 0; const uint64_t bits_size = std::min(this->bits_size_limit, (uint64_t)v.size() - i); for (int j = 0; j < bits_size; ++j) { assert(v[i + j] == 0 or v[i + j] == 1); if (v[i + j] == 1) { bits |= (uint64_t)1 << j; } } leaves.emplace_back(std::make_pair(new Node(bits, bits_size, true), bits_size)); } std::deque> nodes; // (node, 全体のbit数, 全体の1の数, 高さ) while (not leaves.empty()) { const auto node = leaves.front().first; const auto bits_size = leaves.front().second; leaves.pop_front(); nodes.emplace_back(std::make_tuple(node, bits_size, popCount(node->bits), 0)); } while (nodes.size() > 1) { std::deque> next_nodes; while (not nodes.empty()) { // あまりがでたときは,最後に作った中間ノードと結合させるためにnodesに戻す if (nodes.size() == 1) { nodes.push_front(next_nodes.back()); next_nodes.pop_back(); } Node *left_node; uint64_t left_num, left_ones, left_height; std::tie(left_node, left_num, left_ones, left_height) = nodes.front(); nodes.pop_front(); Node *right_node; uint64_t right_num, right_ones, right_height; std::tie(right_node, right_num, right_ones, right_height) = nodes.front(); nodes.pop_front(); const auto internal_node = new Node(0, 0, false); internal_node->num = left_num; internal_node->ones = left_ones; internal_node->left = left_node; internal_node->right = right_node; internal_node->balance = right_height - left_height; next_nodes.emplace_back(std::make_tuple(internal_node, left_num + right_num, left_ones + right_ones, std::max(left_height, right_height) + 1)); } nodes = next_nodes; } uint64_t height; std::tie(this->root, this->size, this->num_one, height) = nodes.front(); nodes.pop_front(); assert(this->size == v.size()); } // B[pos] uint64_t access(uint64_t pos) { assert(pos < this->size); return access(this->root, pos); } // B[0, pos)にある指定されたbitの数 uint64_t rank(uint64_t bit, uint64_t pos) { assert(bit == 0 or bit == 1); assert(pos <= this->size); if (bit) { return rank1(this->root, pos, 0); } else { return pos - rank1(this->root, pos, 0); } } // rank番目の指定されたbitの位置 + 1(rankは1-origin) uint64_t select(uint64_t bit, uint64_t rank) { assert(bit == 0 or bit == 1); assert(rank > 0); if (bit == 0 and rank > this->size - this->num_one) { return NOTFOUND; } if (bit == 1 and rank > this->num_one) { return NOTFOUND; } if (bit) { return select1(this->root, 0, rank); } else { return select0(this->root, 0, rank); } } // posにbitを挿入する void insert(uint64_t pos, uint64_t bit) { assert(bit == 0 or bit == 1); assert(pos <= this->size); // 現在もってるbitsの末尾には挿入できる if (root == nullptr) { root = new Node(bit, 1, true); } else { insert(this->root, nullptr, bit, pos, this->size); } this->size++; this->num_one += (bit == 1); } // posを削除する void erase(uint64_t pos) { assert(pos < this->size); uint64_t bit = this->remove(this->root, nullptr, pos, this->size, 0, true).first; this->size--; this->num_one -= (bit == 1); } private: uint64_t access(const Node *node, uint64_t pos) { if (node->is_leaf) { assert(pos <= 2 * this->bits_size_limit); return (node->bits >> pos) & (uint64_t)1; } if (pos < node->num) { return this->access(node->left, pos); } else { return this->access(node->right, pos - node->num); } } uint64_t rank1(const Node *node, uint64_t pos, uint64_t ones) { if (node->is_leaf) { assert(node->bits_size >= pos); const uint64_t mask = ((uint64_t)1 << pos) - 1; return ones + popCount(node->bits & mask); } if (pos < node->num) { return this->rank1(node->left, pos, ones); } else { return this->rank1(node->right, pos - node->num, ones + node->ones); } } uint64_t select1(const Node *node, uint64_t pos, uint64_t rank) { if (node->is_leaf) { return pos + this->selectInBlock(node->bits, rank) + 1; } if (rank <= node->ones) { return this->select1(node->left, pos, rank); } else { return this->select1(node->right, pos + node->num, rank - node->ones); } } uint64_t select0(const Node *node, uint64_t pos, uint64_t rank) { if (node->is_leaf) { return pos + this->selectInBlock(~node->bits, rank) + 1; } if (rank <= (node->num - node->ones)) { return this->select0(node->left, pos, rank); } else { return this->select0(node->right, pos + node->num, rank - (node->num - node->ones)); } } // bits(64bit)のrank番目(0-index)の1の数 uint64_t selectInBlock(uint64_t bits, uint64_t rank) { const uint64_t x1 = bits - ((bits & 0xAAAAAAAAAAAAAAAALLU) >> (uint64_t)1); const uint64_t x2 = (x1 & 0x3333333333333333LLU) + ((x1 >> (uint64_t)2) & 0x3333333333333333LLU); const uint64_t x3 = (x2 + (x2 >> (uint64_t)4)) & 0x0F0F0F0F0F0F0F0FLLU; uint64_t pos = 0; for (;; pos += 8) { const uint64_t rank_next = (x3 >> pos) & 0xFFLLU; if (rank <= rank_next) break; rank -= rank_next; } const uint64_t v2 = (x2 >> pos) & 0xFLLU; if (rank > v2) { rank -= v2; pos += 4; } const uint64_t v1 = (x1 >> pos) & 0x3LLU; if (rank > v1) { rank -= v1; pos += 2; } const uint64_t v0 = (bits >> pos) & 0x1LLU; if (v0 < rank) { pos += 1; } return pos; } // nodeから辿れる葉のpos番目にbitをいれる(葉のbitの長さはlen) // 高さの変化を返す int64_t insert(Node *node, Node *parent, uint64_t bit, uint64_t pos, uint64_t len) { assert(bit == 0 or bit == 1); if (node->is_leaf) { assert(pos <= 2 * this->bits_size_limit); // posより左をとりだす const uint64_t up_mask = (((uint64_t)1 << (len - pos)) - 1) << pos; const uint64_t up = (node->bits & up_mask); // posより右をとりだす const uint64_t down_mask = ((uint64_t)1 << pos) - 1; const uint64_t down = node->bits & down_mask; node->bits = (up << (uint64_t)1) | (bit << pos) | down; node->bits_size++; assert(node->bits_size == len + 1); // bitsのサイズが大きくなったので分割する if (len + 1 >= 2 * bits_size_limit) { this->splitNode(node, len + 1); // 引数のlenはinsert後の長さなので+1する return 1; } return 0; } if (pos < node->num) { const int64_t diff = this->insert(node->left, node, bit, pos, node->num); node->num += 1; node->ones += (bit == 1); return achieveBalance(parent, node, diff, 0); } else { const int64_t diff = this->insert(node->right, node, bit, pos - node->num, len - node->num); return achieveBalance(parent, node, 0, diff); } } // nodeのpos番目のbitを削除する // 消したbitと高さの変化のpairを返す std::pair remove(Node *node, Node *parent, uint64_t pos, uint64_t len, uint64_t ones, bool allow_under_flow) { if (node->is_leaf) { // 消すとunder flowになるので消さない if (node != this->root and len <= bits_size_limit / 2 and not allow_under_flow) { return std::make_pair(NOTFOUND, 0); } assert(pos <= 2 * this->bits_size_limit); assert(pos < len); const uint64_t bit = (node->bits >> pos) & (uint64_t)1; // posより左をとりだす(posを含まないようにする) const uint64_t up_mask = (((uint64_t)1 << (len - pos - 1)) - 1) << (pos + 1); const uint64_t up = (node->bits & up_mask); // posより右をとりだす const uint64_t down_mask = ((uint64_t)1 << pos) - 1; const uint64_t down = node->bits & down_mask; node->bits = (up >> (uint64_t)1) | down; node->bits_size--; assert(node->bits_size == len - 1); return std::make_pair(bit, 0); } if (pos < node->num) { const auto bit_diff = this->remove(node->left, node, pos, node->num, node->ones, allow_under_flow); if (bit_diff.first == NOTFOUND) { return bit_diff; } node->ones -= (bit_diff.first == 1); // 左の子の葉のbitを1つ消したのでunder flowが発生している if (node->num == bits_size_limit / 2) { const auto b_d = remove(node->right, node, 0, len - bits_size_limit / 2, 0, false); // 右の葉の先頭bitを削る // 右の葉もunder flowになって消せない場合は2つの葉を統合する if (b_d.first == NOTFOUND) { assert(node->left->is_leaf); assert(node->left->bits_size == bits_size_limit / 2 - 1); // 右の子から辿れる一番左の葉の先頭にleftのbitsを追加する mergeNodes(node->right, 0, len - bits_size_limit / 2, node->left->bits, bits_size_limit / 2 - 1, node->ones, true); this->replace(parent, node, node->right); // parentの子のnodeをnode->rightに置き換える return std::make_pair(bit_diff.first, -1); } // 右の葉からとった先頭bitを左の葉の末尾にいれる assert(node->left->bits_size == bits_size_limit / 2 - 1); insert(node->left, node, b_d.first, bits_size_limit / 2 - 1, bits_size_limit / 2 - 1); node->ones += (b_d.first == 1); } else { node->num -= 1; } const int64_t diff = achieveBalance(parent, node, bit_diff.second, 0); return std::make_pair(bit_diff.first, diff); } else { const auto bit_diff = this->remove(node->right, node, pos - node->num, len - node->num, ones - node->ones, allow_under_flow); if (bit_diff.first == NOTFOUND) { return bit_diff; } ones -= (bit_diff.first == 1); // 右の子の葉のbitを1つ消したのでunder flowが発生する if ((len - node->num) == bits_size_limit / 2) { const auto b_d = remove(node->left, node, node->num - 1, node->num, 0, false); // 左の葉の末尾をbitを削る // 左の葉もunder flowになって消せない場合は2つの葉を統合する if (b_d.first == NOTFOUND) { assert(node->right->is_leaf); assert(node->right->bits_size == bits_size_limit / 2 - 1); // 左の子から辿れる一番右の葉の末尾にleftのbitsを追加する mergeNodes(node->left, node->num, node->num, node->right->bits, bits_size_limit / 2 - 1, ones - node->ones, false); this->replace(parent, node, node->left); // parentの子のnodeをnode->leftに置き換える return std::make_pair(bit_diff.first, -1); } // 左の葉からとった最後尾bitを右の葉の先頭にいれる insert(node->right, node, b_d.first, 0, bits_size_limit / 2 - 1); node->num -= 1; node->ones -= (b_d.first == 1); } const int64_t diff = achieveBalance(parent, node, 0, bit_diff.second); return std::make_pair(bit_diff.first, diff); } } // nodeを2つの葉に分割する void splitNode(Node *node, uint64_t len) { assert(node->is_leaf); assert(node->bits_size == len); // 左の葉 const uint64_t left_size = len / 2; const uint64_t left_bits = node->bits & (((uint64_t)1 << left_size) - 1); node->left = new Node(left_bits, left_size, true); // 右の葉 const uint64_t right_size = len - left_size; const uint64_t right_bits = node->bits >> left_size; node->right = new Node(right_bits, right_size, true); // nodeを内部ノードにする node->is_leaf = false; node->num = left_size; node->ones = this->popCount(left_bits); node->bits = 0; node->bits_size = 0; } // nodeから辿れる葉のpos番目にbitsを格納する void mergeNodes(Node *node, uint64_t pos, uint64_t len, uint64_t bits, uint64_t s, uint64_t ones, bool left) { if (node->is_leaf) { if (left) { node->bits = (node->bits << s) | bits; } else { assert(len == node->bits_size); node->bits = node->bits | (bits << len); } node->bits_size += s; return; } if (pos < node->num) { node->num += s; node->ones += ones; mergeNodes(node->left, pos, node->num, bits, s, ones, left); } else { mergeNodes(node->right, pos, len - node->num, bits, s, ones, left); } } // nodeの左の高さがleftHeightDiffだけ変わり,右の高さがrightHeightDiffだけ変わったときにnodeを中心に回転させる // 高さの変化を返す int64_t achieveBalance(Node *parent, Node *node, int64_t leftHeightDiff, int64_t rightHeightDiff) { assert(-1 <= node->balance and node->balance <= 1); assert(-1 <= leftHeightDiff and leftHeightDiff <= 1); assert(-1 <= rightHeightDiff and rightHeightDiff <= 1); if (leftHeightDiff == 0 and rightHeightDiff == 0) { return 0; } int64_t heightDiff = 0; // 左が高いときに,左が高くなる or 右が高いときに右が高くなる if ((node->balance <= 0 and leftHeightDiff > 0) or (node->balance >= 0 and rightHeightDiff > 0)) { ++heightDiff; } // 左が高いときに左が低くなる or 右が高いときに右が低くなる if ((node->balance < 0 and leftHeightDiff < 0) or (node->balance > 0 and rightHeightDiff < 0)) { --heightDiff; } node->balance += -leftHeightDiff + rightHeightDiff; assert(-2 <= node->balance and node->balance <= 2); // 左が2高い if (node->balance == -2) { assert(-1 <= node->left->balance and node->left->balance <= 1); if (node->left->balance != 0) { heightDiff--; } if (node->left->balance == 1) { replace(node, node->left, rotateLeft(node->left)); } replace(parent, node, rotateRight(node)); } // 右が2高い else if (node->balance == 2) { assert(-1 <= node->right->balance and node->right->balance <= 1); if (node->right->balance != 0) { heightDiff--; } if (node->right->balance == -1) { replace(node, node->right, rotateRight(node->right)); } replace(parent, node, rotateLeft(node)); } return heightDiff; } // node Bを中心に左回転する.新しい親を返す Node *rotateLeft(Node *B) { Node *D = B->right; const int64_t heightC = 0; const int64_t heightE = heightC + D->balance; const int64_t heightA = std::max(heightC, heightE) + 1 - B->balance; B->right = D->left; D->left = B; B->balance = heightC - heightA; D->num += B->num; D->ones += B->ones; D->balance = heightE - (std::max(heightA, heightC) + 1); assert(-2 <= B->balance and B->balance <= 2); assert(-2 <= D->balance and D->balance <= 2); return D; } // node Dを中心に右回転する.新しい親を返す Node *rotateRight(Node *D) { Node *B = D->left; const int64_t heightC = 0; const int64_t heightA = heightC - B->balance; const int64_t heightE = std::max(heightA, heightC) + 1 + D->balance; D->left = B->right; B->right = D; D->num -= B->num; D->ones -= B->ones; D->balance = heightE - heightC; B->balance = std::max(heightC, heightE) + 1 - heightA; assert(-2 <= B->balance and B->balance <= 2); assert(-2 <= D->balance and D->balance <= 2); return B; } // parentの子のoldNodeをnewNodeに置き換える void replace(Node *parent, Node *oldNode, Node *newNode) { if (parent == nullptr) { this->root = newNode; return; } if (parent->left == oldNode) { parent->left = newNode; } else if (parent->right == oldNode) { parent->right = newNode; } else { throw "old node is not child"; } } uint64_t popCount(uint64_t x) { x = (x & 0x5555555555555555ULL) + ((x >> (uint64_t)1) & 0x5555555555555555ULL); x = (x & 0x3333333333333333ULL) + ((x >> (uint64_t)2) & 0x3333333333333333ULL); x = (x + (x >> (uint64_t)4)) & 0x0f0f0f0f0f0f0f0fULL; x = x + (x >> (uint64_t)8); x = x + (x >> (uint64_t)16); x = x + (x >> (uint64_t)32); return x & 0x7FLLU; } }; class DynamicWaveletMatrix { public: std::vector bit_arrays; std::vector begin_one; // 各bitの1の開始位置 uint64_t size; // 与えられた配列のサイズ uint64_t maximum_element; // 最大の文字 uint64_t bit_size; // 文字を表すのに必要なbit数 public: // max_element: 入ってくる中で一番大きい数値 DynamicWaveletMatrix(uint64_t maximum_element) : size(0), maximum_element(maximum_element + 1) { this->bit_size = this->get_num_of_bit(maximum_element); if (bit_size == 0) { bit_size = 1; } this->begin_one.resize(bit_size); for (uint64_t i = 0; i < bit_size; ++i) { DynamicBitVector sv; bit_arrays.push_back(sv); } } DynamicWaveletMatrix(uint64_t num_of_alphabet, const std::vector &array) : size(0), maximum_element(num_of_alphabet + 1) { this->bit_size = this->get_num_of_bit(num_of_alphabet); if (bit_size == 0) { bit_size = 1; } this->begin_one.resize(bit_size); if (array.size() == 0) { for (uint64_t i = 0; i < bit_size; ++i) { DynamicBitVector sv; bit_arrays.push_back(sv); } return; } size = array.size(); std::vector v(array), b(array.size(), 0); for (uint64_t i = 0; i < bit_size; ++i) { std::vector temp; // 0をtempにいれてく for (uint64_t j = 0; j < v.size(); ++j) { uint64_t c = v.at(j); uint64_t bit = (c >> (bit_size - i - 1)) & 1; // 上からi番目のbit if (bit == 0) { temp.push_back(c); b[j] = 0; } } this->begin_one.at(i) = temp.size(); // 1をtempにいれてく for (uint64_t j = 0; j < v.size(); ++j) { uint64_t c = v.at(j); uint64_t bit = (c >> (bit_size - i - 1)) & 1; // 上からi番目のbit if (bit == 1) { temp.push_back(c); b[j] = 1; } } DynamicBitVector dbv(b); bit_arrays.emplace_back(dbv); v = temp; } } // v[pos] uint64_t access(uint64_t pos) { if (pos >= this->size) { return NOTFOUND; } uint64_t c = 0; for (uint64_t i = 0; i < bit_arrays.size(); ++i) { uint64_t bit = bit_arrays.at(i).access(pos); // もとの数値がのi番目のbit c = (c <<= 1) | bit; pos = bit_arrays.at(i).rank(bit, pos); if (bit) { pos += this->begin_one.at(i); } } return c; } // i番目のcの位置 + 1を返す。rankは1-origin uint64_t select(uint64_t c, uint64_t rank) { assert(rank > 0); if (c >= maximum_element) { return NOTFOUND; } uint64_t left = 0; for (uint64_t i = 0; i < bit_size; ++i) { const uint64_t bit = (c >> (bit_size - i - 1)) & 1; // 上からi番目のbit left = bit_arrays.at(i).rank(bit, left); // cのi番目のbitと同じ数値の数 if (bit) { left += this->begin_one.at(i); } } uint64_t index = left + rank; for (uint64_t i = 0; i < bit_arrays.size(); ++i) { uint64_t bit = ((c >> i) & 1); // 下からi番目のbit if (bit == 1) { index -= this->begin_one.at(bit_size - i - 1); } index = this->bit_arrays.at(bit_size - i - 1).select(bit, index); } return index; } // posにcを挿入する void insert(uint64_t pos, uint64_t c) { assert(pos <= this->size); for (uint64_t i = 0; i < bit_arrays.size(); ++i) { const uint64_t bit = (c >> (bit_size - i - 1)) & 1; // 上からi番目のbit bit_arrays.at(i).insert(pos, bit); pos = bit_arrays.at(i).rank(bit, pos); if (bit) { pos += this->begin_one.at(i); } else { this->begin_one.at(i)++; } } this->size++; } // posを削除する void erase(uint64_t pos) { assert(pos < this->size); if (pos >= this->size) { throw "Segmentation fault"; } for (uint64_t i = 0; i < bit_arrays.size(); ++i) { uint64_t bit = bit_arrays.at(i).access(pos); // もとの数値のi番目のbit auto next_pos = bit_arrays.at(i).rank(bit, pos); bit_arrays.at(i).erase(pos); if (bit) { next_pos += this->begin_one.at(i); } else { this->begin_one.at(i)--; } pos = next_pos; } this->size--; } // posにcをセットする void update(uint64_t pos, uint64_t c) { assert(pos < this->size); this->erase(pos); this->insert(pos, c); } // v[begin_pos, end_pos)で最小値のindexを返す uint64_t minRange(uint64_t begin_pos, uint64_t end_pos) { return quantileRange(begin_pos, end_pos, 0); } // v[begin_pos, end_pos)でk番目に小さい数値のindexを返す(kは0-origin) // つまり小さい順に並べてk番目の値 uint64_t quantileRange(uint64_t begin_pos, uint64_t end_pos, uint64_t k) { if ((end_pos > size || begin_pos >= end_pos) || (k >= end_pos - begin_pos)) { return NOTFOUND; } uint64_t val = 0; for (uint64_t i = 0; i < bit_size; ++i) { uint64_t num_of_zero_begin = bit_arrays.at(i).rank(0, begin_pos); uint64_t num_of_zero_end = bit_arrays.at(i).rank(0, end_pos); uint64_t num_of_zero = num_of_zero_end - num_of_zero_begin; // beginからendまでにある0の数 uint64_t bit = (k < num_of_zero) ? 0 : 1; // k番目の値の上からi番目のbitが0か1か if (bit) { k -= num_of_zero; begin_pos = this->begin_one.at(i) + begin_pos - num_of_zero_begin; end_pos = this->begin_one.at(i) + end_pos - num_of_zero_end; } else { begin_pos = num_of_zero_begin; end_pos = num_of_zero_begin + num_of_zero; } val = ((val << 1) | bit); } uint64_t left = 0; for (uint64_t i = 0; i < bit_size; ++i) { const uint64_t bit = (val >> (bit_size - i - 1)) & 1; // 上からi番目のbit left = bit_arrays.at(i).rank(bit, left); // cのi番目のbitと同じ数値の数 if (bit) { left += this->begin_one.at(i); } } uint64_t rank = begin_pos + k - left + 1; return select(val, rank) - 1; } private: uint64_t get_num_of_bit(uint64_t x) { if (x == 0) return 0; x--; uint64_t bit_num = 0; while (x >> bit_num) { ++bit_num; } return bit_num; } }; #pragma endregion /* DynamicWaveletMatrix(uint64_t maximum_element) 入りうる一番大きい値を渡す(INT_MAX等) DynamicWaveletMatrix(uint64_t num_of_alphabet, const vector &array) num_of_alphabet: 要素の最大値(上に同じ) uint64_t access(uint64_t pos) v[pos] uint64_t select(uint64_t c, uint64_t rank) i 番目の c の位置 +1 を返す。rank は 1-origin void insert(uint64_t pos, uint64_t c) posにcを挿入する void erase(uint64_t pos) posを削除する void update(uint64_t pos, uint64_t c) posにcをセットする uint64_t maxRange(uint64_t begin_pos, uint64_t end_pos) v[begin_pos, end_pos)で最大値のindexを返す uint64_t minRange(uint64_t begin_pos, uint64_t end_pos) v[begin_pos, end_pos)で最小値のindexを返す uint64_t quantileRange(uint64_t begin_pos, uint64_t end_pos, uint64_t k) v[begin_pos, end_pos)でk番目に小さい数値のindexを返す (kは0-origin) つまり小さい順に並べてk番目の値 void rankAll(uint64_t c, uint64_t begin_pos, uint64_t end_pos, uint64_t &rank, uint64_t &rank_less_than, uint64_t &rank_more_than) v[begin_pos, end_pos)でcと同じ値の数、cより小さい値の数、cより大きい値の数を求める vector> topk(uint64_t s, uint64_t e, uint64_t k) T[s1, e1)で出現回数が多い順にk個の値を返す vector> intersect(uint64_t _s1, uint64_t _e1, uint64_t _s2, uint64_t _e2) T[s1, e1)とT[s2, e2)に共通して出現する要素を求める */ void solve() { int q, k; cin >> q >> k; k--; DynamicWaveletMatrix wm(ll(1e18) + 10); rep(qi, q) { int t; cin >> t; if (t == 1) { ll v; cin >> v; wm.insert(wm.size, v); } else { if (wm.size <= k) { cout << -1 << "\n"; } else { int i = wm.quantileRange(0, wm.size, k); cout << wm.access(i) << "\n"; wm.erase(i); } } } } int main() { solve(); }