#include //#include //using namespace atcoder; #pragma GCC target ("avx2") #pragma GCC optimization ("O3") #pragma GCC optimize("Ofast") #pragma GCC optimization ("unroll-loops") using namespace std; typedef vector VI; typedef vector VVI; typedef vector VS; typedef pair PII; typedef pair pii; typedef pair PLL; typedef pair TIII; typedef long long ll; typedef long double ld; typedef unsigned long long ull; #define FOR(i, s, n) for (int i = s; i < (int)n; ++i) #define REP(i, n) FOR(i, 0, n) #define rep(i, a, b) for (int i = a; i < (b); ++i) #define trav(a, x) for (auto &a : x) #define all(x) x.begin(), x.end() template inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;} template inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;} const double EPS = 1e-12, PI = acos(-1); const double pi = 3.141592653589793238462643383279; //ここから編集 typedef string::const_iterator State; ll GCD(ll a, ll b){ return (b==0)?a:GCD(b, a%b); } ll LCM(ll a, ll b){ return a/GCD(a, b) * b; } template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< 1000000007 >; using modint9 = ModInt<998244353>; template< typename T > struct Combination { vector< T > _fact, _rfact, _inv; Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) { _fact[0] = _rfact[sz] = _inv[0] = 1; for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i; _rfact[sz] /= _fact[sz]; for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1); for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1]; } inline T fact(int k) const { return _fact[k]; } inline T rfact(int k) const { return _rfact[k]; } inline T inv(int k) const { return _inv[k]; } T P(int n, int r) const { if(r < 0 || n < r) return 0; return fact(n) * rfact(n - r); } T C(int p, int q) const { if(q < 0 || p < q) return 0; return fact(p) * rfact(q) * rfact(p - q); } T H(int n, int r) const { if(n < 0 || r < 0) return (0); return r == 0 ? 1 : C(n + r - 1, r); } }; ll modpow(ll x, ll n, ll mod = 100000007) { ll res = 1; while(n) { if(n&1) res = (res * x)%mod; x = (x*x)%mod; n >>= 1; } return res; } int n; double dp[110][110][110]; double rec(int a, int b, int c) { if(dp[a][b][c] != -1.0) return dp[a][b][c]; double res = 0.0; double p = (double)(n-c)/n; if(a != n) res += (rec(a+1, b, c) + 1.0/p) * (n-a) / (n-c); if(a-b != 0) res += (rec(a, b+1, c) + 1.0/p) * (a-b) / (n-c); if(b-c != 0) res += (rec(a, b, c+1) + 1.0/p) * (b-c) / (n-c); return dp[a][b][c] = res; } int main() { cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(12); cin >> n; vector A(n); int a=0, b=0, c=0; REP(i,n) { cin >> A[i]; if(A[i] == 0) a++; if(A[i] == 1) b++; if(A[i] == 2) c++; } REP(i,n+1) REP(j,n+1) REP(k,n+1) dp[i][j][k] = -1.0; dp[n][n][n] = 0; cout << rec(n-a, n-(a+b), n-(a+b+c)) << endl; return 0; }