p, g, ig = 924844033, 5, 554906420 W = [pow(g, (p - 1) >> i, p) for i in range(24)] iW = [pow(ig, (p - 1) >> i, p) for i in range(24)] P = p nn = 600600 fa = [1] * (nn+1) fainv = [1] * (nn+1) for i in range(nn): fa[i+1] = fa[i] * (i+1) % P fainv[-1] = pow(fa[-1], P-2, P) for i in range(nn)[::-1]: fainv[i] = fainv[i+1] * (i+1) % P def convolve(a, b): def fft(f): for l in range(k, 0, -1): d = 1 << l - 1 U = [1] for i in range(d): U.append(U[-1] * W[l] % p) for i in range(1 << k - l): for j in range(d): s = i * 2 * d + j t = s + d f[s], f[t] = (f[s] + f[t]) % p, U[j] * (f[s] - f[t]) % p def ifft(f): for l in range(1, k + 1): d = 1 << l - 1 U = [1] for i in range(d): U.append(U[-1] * iW[l] % p) for i in range(1 << k - l): for j in range(d): s = i * 2 * d + j t = s + d f[s], f[t] = (f[s] + f[t] * U[j]) % p, (f[s] - f[t] * U[j]) % p n0 = len(a) + len(b) - 1 if len(a) < 50 or len(b) < 50: ret = [0] * n0 if len(a) > len(b): a, b = b, a for i, aa in enumerate(a): for j, bb in enumerate(b): ret[i+j] = (ret[i+j] + aa * bb) % p return ret k = (n0).bit_length() n = 1 << k a = a + [0] * (n - len(a)) b = b + [0] * (n - len(b)) fft(a), fft(b) for i in range(n): a[i] = a[i] * b[i] % p ifft(a) invn = pow(n, p - 2, p) for i in range(n0): a[i] = a[i] * invn % p del a[n0:] return a def calc(a, b, c): M = a + b + c if M % 2: return 0 M //= 2 i3 = pow(3, P - 2, P) re = 0 www = [1, 667811836, 257032196] # Cube root of 1 mod P A = [fainv[i] * fainv[a-i] % P * www[(2*i-a)%3] % P for i in range(a + 1)] B = [fainv[i] * fainv[b-i] % P * www[(b-2*i)%3] % P for i in range(b + 1)] AB = convolve(A, B) for i, x in enumerate(AB): if i > M: continue j = M - a - b + i if j < 0: continue re = (re + x * fainv[M-i] % P * fainv[j]) % P re = fa[M] ** 2 % P * re % P * 2 * i3 % P re = (re + fa[M*2] * fainv[a] * fainv[b] * fainv[c] * i3) % P return re a, b, c = map(int, input().split()) print(calc(a, b, c))