# Binary Indexed Tree (Fenwick Tree) # 1-indexed class BIT: def __init__(self, n): self.n = n self.data = [0]*(n+1) self.el = [0]*(n+1) # sum(ary[:i]) def sum(self, i): s = 0 while i > 0: s += self.data[i] i -= i & -i return s # ary[i]+=x def add(self, i, x): # assert i > 0 self.el[i] += x while i <= self.n: self.data[i] += x i += i & -i # sum(ary[i:j]) def get(self, i, j=None): if j is None: return self.el[i] return self.sum(j) - self.sum(i) # 区間加算可能なBIT。内部的に1-indexed BITを使う class BIT_Range(): def __init__(self,n): self.n=n self.bit0=BIT(n+1) self.bit1=BIT(n+1) # for i in range(l,r):ary[i]+=x def add(self,l,r,x): l+=1 self.bit0.add(l,-x*(l-1)) self.bit0.add(r+1,x*r) self.bit1.add(l,x) self.bit1.add(r+1,-x) # sum(ary[:i]) def sum(self,i): if i==0:return 0 #i-=1 return self.bit0.sum(i)+self.bit1.sum(i)*i # ary[i] def get(self,i): return self.sum(i+1)-self.sum(i) # sum(ary[i:j]) def get_range(self,i,j): return self.sum(j)-self.sum(i) def main0(n,m,k,lr): mod=10**9+7 bit=BIT_Range(n+1) bit.add(1,2,1) for _ in range(k): nbit=BIT_Range(n+1) for l,r in lr: s=bit.sum(r+1)-bit.sum(l) s%=mod nbit.add(l,r+1,s) bit=nbit return (bit.sum(n+1)-bit.sum(n))%mod def main1(n,m,k,lr): mod=10**9+7 lr.sort(key=lambda x:x[0]) lrr=[[l,r] for l,r in lr] lrr.sort(key=lambda x:x[1],reverse=True) dp=[0]*(n+1) dp[1]=1 now=0 cnt=0 mat=[[] for _ in range(n+1)] for _ in range(k): ndp=[0]*(n+1) sdp=[0] for x in dp:sdp.append((sdp[-1]+x)%mod) # 下からの遷移。同じ階の移動も含む idx=0 now=0 cnt=0 for j in range(1,n+1): # j階への遷移 while idx