def Smallest_Prime_Factor(N): """0,1,2,...,Nの最小の素因数のリスト(0,1については1にしている) """ if N==0: return [1] N=abs(N) L=list(range(N+1)) L[0]=L[1]=1 x=4 while x<=N: L[x]=2 x+=2 x=9 while x<=N: if L[x]==x: L[x]=3 x+=6 x=5 Flag=0 while x*x<=N: if L[x]==x: y=x*x while y<=N: if L[y]==y: L[y]=x y+=x<<1 x+=2+2*Flag Flag^=1 return L def Faster_Prime_Factorization(N,L): """ L:Smallest_Prime_Factors(N)で求めたリスト """ N=abs(N) D=[] while N>1: a=L[N] k=0 while L[N]==a: k+=1 N//=a D.append([a,k]) return D #素因数分解の結果から, 約数を全て求める. def Divisors_from_Prime_Factor(P,sorting=False): from itertools import product def integer_product(t): x=1 for a in t:x*=a return x A=[] for p,e in P: B=[1] x=1 for _ in range(e): x*=p B.append(x) A.append(B) X=[integer_product(t) for t in product(*A)] if sorting: X.sort() return X #================================================== M=int(input()) Mod=10**9+7 DP=[0]*(M+1) DP[0]=1 L=Smallest_Prime_Factor(M) for i in range(1,M+1): for j in Divisors_from_Prime_Factor(Faster_Prime_Factorization(i,L)): DP[i]+=DP[i//j-1] DP[i]%=Mod print(DP[M])