"""

https://yukicoder.me/problems/no/1590

分からなければさっさと見ちゃおうかな
寄与を考えるよね

x人目がy番目の商品を買う確率
がわかればおk

x,yのペアに関して求めたい

=====================

答えを見た

出来そうなdpから結果を導出する

Borderごとに
dp[Border][a][b] = a日目でBorder以下がb個残っている確率

とすると、
a日目の人の購入額の期待値は

1/2 * ( dp[B0][a][0] * B0 + dp[B1][a][0] * (B1-B0) + ... )
ただし、その日の商品 A[a] < B?

p[i][j] = 

"""

from sys import stdin

N = int(stdin.readline())

A = list(map(int,stdin.readline().split()))
R = list(map(int,stdin.readline().split()))

s = set(A)
s.add(0)
B = list(s)
B.sort()

#print (B)

dp = {}

for Border in B:

    ndp = [[0] * (N+1) for i in range(N+1)]
    ndp[0][0] = 1

    for a in range(N):

        na = A[a]

        for b in range(N+1):

            if na <= Border:
                
                #追加して、取る場合
                ndp[a+1][b] += ndp[a][b] / 2
                #追加して、取らない場合
                if b != N:
                    ndp[a+1][b+1] += ndp[a][b] / 2

            else:
                #追加はしない、取る場合
                ndp[a+1][max(0,b-1)] += ndp[a][b]/2
                #追加はしない、取らない場合
                ndp[a+1][b] += ndp[a][b] / 2

    dp[Border] = ndp

#print (dp)

ans = 0
for a in range(1,N+1):

    na = A[a-1] 
    nr = R[a-1] 

    nsum = 0
    for j in range(len(B)-1):

        p = 0 #人aが、B[j]より大きい奴を取る確率
        if na <= B[j]:
            p = 0
        else:
            p = dp[B[j]][a-1][0] / 2

        #print (a,B[j],p)
        nsum += (B[j+1]-B[j]) * p

    ans += nsum * nr

    #print (nsum * nr)

print (ans)