#pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include "bits/stdc++.h" #ifdef _MSC_VER #include //gcc上ではこれがあると動かない。__popcnt, umul128 等用のincludeファイル。 #define __builtin_popcount __popcnt #define __builtin_popcountll __popcnt64 inline unsigned int __builtin_ctz(unsigned int x) { unsigned long r; _BitScanForward(&r, x); return r; } // 1 の位から何個 0 が連なっているか。 #pragma warning(disable : 4996) #pragma intrinsic(_umul128) #endif //#include //using namespace atcoder; using namespace std; //---------- 多倍長関連 ---------- //#include //#include //using namespace boost::multiprecision; typedef long long ll; typedef long double ld; #define int long long //#define double long double #define LL128 boost::multiprecision::int128_t #define LL boost::multiprecision::cpp_int #define LD100 boost::multiprecision::cpp_dec_float_100 #define LD50 boost::multiprecision::cpp_dec_float_50 #define rep(i, n) for(long long i = 0; i < (n); i++) #define rep2(i, s, n) for(long long i = (s); i < (n); i++) #define sqrt(d) pow((ld) (d), 0.50) #define PII pair #define MP make_pair #define PB push_back #define ALL(v) v.begin(), v.end() const int INF = std::numeric_limits::max() / 2 - 100000000; const long long INF2 = std::numeric_limits::max() / 2 - 100000000; const ld pi = acos(-1); constexpr int MOD = 1000000007; //1e9 + 7 //constexpr int MOD = 1000000009; //1e9 + 9 //constexpr int MOD = 998244353; // 7 * 17 * 2^23 + 1 //---------- chmax, min 関連 ---------- template inline void chmax(T& a, T b) { if (a < b) a = b; } template inline void chmin(T& a, T b) { if (a > b) a = b; } //---------- 整数の根号関連 ---------- //res * res <= n なる最大の整数 res を返す。 template T floor_sqrt(T n) { assert(n >= 0); T res = max((T)floor(sqrt(n)) - (T)2, (T)0); while ((res + 1) * (res + 1) <= n) res++; return res; } //res * res >= n なる最小の整数 res を返す。 template T ceil_sqrt(T n) { T res = floor_sqrt(n); if (res * res == n) return res; else return res + 1; } template T round_sqrt(T n) { T res = floor_sqrt(n); if (abs(n - res * res) >= abs(n - (res + 1) * (res + 1))) res++; return res; } //---------- gcd, lcm ---------- template T my_gcd(T a, T b) { if (b == (T)0) return a; return my_gcd(b, a % b); } template T my_lcm(T a, T b) { return a / my_gcd(a, b) * b; } // ax + by = gcd(a, b) を解く。返り値は、gcd(a, b)。 //但し、a, b が負である場合は、返り値が正であることは保障されない。 long long my_gcd_ext(long long a, long long b, long long& x, long long& y) { if (b == 0) { x = 1; y = 0; return a; } long long tempo = my_gcd_ext(b, a % b, y, x); //bx' + ry' = gcd(a, b) → (qb + r)x + by = gcd(a, b) に戻さないといけない。// (r = a % b) //b(x' - qy') + (bq + r)y' = gcd(a, b) と同値変形できるから、 // x = y', y = x' - qy' y -= (a / b) * x; return tempo; } //中国式剰余の定理 (CRT) // x = base1 (mod m1) かつ x = base2 (mod m2) を解く。 // リターン値を (r, m) とすると解は x = r (mod m) で、m = lcm(m1, m2) // 解なしの場合は (0, -1) をリターン pair CRT(long long base1, long long m1, long long base2, long long m2) { long long p, q; long long gcd0 = my_gcd_ext(m1, m2, p, q); if ((base2 - base1) % gcd0 != 0) return make_pair(0, -1); long long lcm0 = m1 * (m2 / gcd0); // 括弧がないとオーバーフローのリスクがある。 p *= (base2 - base1) / gcd0; p %= (m2 / gcd0); q *= (base2 - base1) / gcd0; q %= (m1 / gcd0); long long r = (base1 + m1 * p) % lcm0; if (r < 0) r += lcm0; return make_pair(r, lcm0); } //M を法として、a の逆元を返す。但し gcd(a, M) = 1。 long long my_invmod(long long a, long long M) { long long x = 0, y = 0; long long memo = my_gcd_ext(a, M, x, y); assert(memo == 1LL); x %= M; if (x < 0) x += M; return x; } //繰り返し2乗法 //N^aの、Mで割った余りを求める。 template T my_pow(T N, T a, T M) { T tempo; if (a == 0) { return 1; } else { if (a % 2 == 0) { tempo = my_pow(N, a / 2, M); return (tempo * tempo) % M; } else { tempo = my_pow(N, a - 1, M); return (tempo * N) % M; } } } // 繰り返し2乗法 // T = modint でも動く。 template T my_pow(T N, long long a) { T tempo; if (a == 0) { return 1; } else { if (a % 2 == 0) { tempo = my_pow(N, a / 2); return (tempo * tempo); } else { tempo = my_pow(N, a - 1); return (tempo * N); } } } //N_C_a を M で割った余り ll my_comb(ll N, ll a, ll M) { if (N < a) return 0; ll answer = 1; rep(i, a) { answer *= (N - i); answer %= M; } rep(i, a) { //answer *= my_pow(i + 1, M - 2, M); answer *= my_invmod(i + 1, M); answer %= M; } return answer; } //N_C_a template T my_comb(T N, T a) { if (N < a) return (T)0; T answer = 1; for (T i = (T)0; i < a; i++) { answer *= (N - i); answer /= i + 1; } return answer; } // 階乗。x ! まで計算する。結果は dp に保存する。20 ! = 2.43e18 まで long long に入る。 // dp の処理前の初期値は 0 にする。modint にも適用可能。 template T factorial(int x, vector& dp) { //dp サイズを x + 1 に伸ばす。 if ((int)dp.size() <= x) { int n = dp.size(); for (int i = 0; i < x + 1 - n; i++) { dp.push_back(0); } } if (x == 0) return dp.at(x) = (T)1; if (dp.at(x) != (T)0) return dp.at(x); return dp.at(x) = (T)x * factorial(x - 1, dp); } // base を底としたときの、n の i桁目を、v.at(i) に入れる。 vector ll_to_vector(signed base, long long n) { long long tempo = n; long long tempo2 = n; //桁数を求めるときに使う signed n_digit = 1; while (tempo2 >= base) { tempo2 /= base; n_digit++; } vector v(n_digit, 0); // v のサイズを適切に調整。 long long denominator = my_pow((long long)base, (long long)(n_digit - 1)); for (signed i = 0; i < n_digit; i++) { v.at(i) = tempo / denominator; tempo -= v.at(i) * denominator; denominator /= base; } return v; } // M 桁に足りない場合、0 を追加して強制的に M 桁にする。 vector ll_to_vector(signed base, long long n, int M) { vector v = ll_to_vector(base, n); //assert((int)v.size() <= M); if ((int)v.size() >= M) return v; else { int diff = M - v.size(); vector res(diff, 0); for (int i = 0; i < (int)v.size(); i++) res.emplace_back(v.at(i)); return res; } } //エラトステネスの篩で、prime で ないところに false を入れる。O(n loglog n) // T = int (defalt, sieve が ll で間に合うことはないので。) // vector に替えるとむしろ遅くなる。 template vector sieve_bool(T N) { vector res(N + 1, true); res.at(0) = false; res.at(1) = false; for (T i = 2; 2 * i <= N; i++) { res.at(2 * i) = false; } for (T i = 3; i * i <= N; i += 2) { //ここからは奇数のみ探索。i の倍数に false を入れる。 if (res.at(i)) { T j = i * i; // i^2 未満の i の倍数には、すでに false が入っているはず。 while (j <= N) { res.at(j) = false; j += 2 * i; } } } return res; }; // n + 1 の サイズの vector を返す。res.at(i) には、i の 1 以外で最小の約数を入れる。 // res.at(i) == i で、i != 0, 1 なら i は素数。 // 2e8 なら、2.3 ~ 2.4 sec 程度で終わる。sieve_bool は 0.7 sec なので、3 倍強遅い。ll にすると、3.2 sec に伸びてしまう。 // T = int (defalt, sieve が ll で間に合うことはないので。) template vector sieve(T n) { n++; // n まで判定する。配列サイズは +1。 vector res(n, 0); for (T i = 1; i < n; i++) { if (i % 2 == 0) res.at(i) = 2; // 偶数をあらかじめ処理。 else res.at(i) = i; // 奇数には自分自身を入れる。 } for (T i = 3; i * i < n; i += 2) { //ここからは奇数のみ探索。i の倍数に i を入れる。 if (res.at(i) == i) { T j = i * i; // i^2 未満の i の倍数には、すでに最小の約数が入っているはず。 while (j < n) { if (res.at(j) == j) res.at(j) = i; j += 2 * i; } } } return res; }; //O (sqrt(n)) で素数判定する用。 bool is_prime(long long N) { if (N == 1 || N == 0) return false; if (N == 2 || N == 3) return true; if (N % 2 == 0) return false; if (N % 3 == 0) return false; for (long long i = 1; (6 * i + 1) * (6 * i + 1) <= N; ++i) { if (N % (6 * i + 1) == 0) return false; } for (long long i = 0; (6 * i + 5) * (6 * i + 5) <= N; ++i) { if (N % (6 * i + 5) == 0) return false; } return true; } // 素因分解アルゴリズム (O(sqrt(N)) → O(N^0.25) のρ法も持っている。 // T = long long (defalt) template map PrimeFactor(T N) { map res; T i = 2; while (i * i <= N) { while (N % i == 0) { res[i]++; N /= i; } i += 1 + (i % 2); //i == 2 の場合だけ +1, その他の場合は +2 } if (N > 1) res[N]++; //sqrt((元の N)) より大きな素因数は高々1つしかない。 return res; } //関数 sieve で得た、vector min_factor を持ってるときに、素因数分解を高速で行うための関数。 // T = int (defalt, sieve が ll で間に合うことはないので。) template map PrimeFactor2(T target, vector& min_factor) { map res; if (min_factor.empty() || (T)min_factor.size() - 1 < target) min_factor = sieve(target); while (target > 1) { res[min_factor[target]]++; target /= min_factor[target]; } return res; } //約数全列挙を O(sqrt(N)) で行うための関数。 vector count_dividers(long long target) { vector dividers, tempo; long long i = 1; while (i * i < target + 1) { if (target % i == 0) { dividers.push_back(i); if (i < target / i) tempo.push_back(target / i); // if節がないと、平方数の時、sqrt(target) がダブルカウントされる。 } i++; } for (long long j = 0; j < (long long)tempo.size(); j++) { dividers.push_back(tempo.at(tempo.size() - 1 - j)); } return dividers; } //関数 sieve で得た、vector min_factor を持ってるときに、約数全列挙を高速で行うための関数。 // T = int (defalt, sieve が ll で間に合うことはないので。) template vector count_dividers2(T target, vector& min_factor, bool is_sort = false) { vector dividers = { 1 }; map memo = PrimeFactor2(target, min_factor); for (auto&& iter = memo.begin(); iter != memo.end(); iter++) { vector tempo = dividers; for (T k = 0; k < (T)tempo.size(); k++) { T times = 1; for (T j = 1; j <= (iter->second); j++) { times *= iter->first; dividers.push_back(tempo[k] * times); } } } if (is_sort) sort(dividers.begin(), dividers.end()); //sortしないと小さい順に並ばないが、必要ないなら消しても良い。 return dividers; } class UnionFind { public: vector parent; vector rank; vector v_size; UnionFind(int N) : parent(N), rank(N, 0), v_size(N, 1) { rep(i, N) { parent[i] = i; } } int root(int x) { if (parent[x] == x) return x; return parent[x] = root(parent[x]); //経路圧縮 } void unite(int x, int y) { int rx = root(x); int ry = root(y); if (rx == ry) return; //xの根とyの根が同じなので、何もしない。 if (rank[rx] < rank[ry]) { parent[rx] = ry; v_size[ry] += v_size[rx]; } else { parent[ry] = rx; v_size[rx] += v_size[ry]; if (rank[rx] == rank[ry]) rank[rx]++; } } bool same(int x, int y) { return (root(x) == root(y)); } int count_tree() { int N = parent.size(); int res = 0; rep(i, N) { if (root(i) == i) res++; } return res; } int size(int x) { return v_size[root(x)]; } }; class wUnionFind { public: vector parent; vector diff_weight; //親との差分。 vector rank; wUnionFind(int N) : parent(N), diff_weight(N, 0), rank(N, 0) { rep(i, N) { parent.at(i) = i; } } int root(int x) { if (parent.at(x) == x) return x; int r = root(parent.at(x)); diff_weight.at(x) += diff_weight.at(parent.at(x)); //累積和 return parent.at(x) = r; } //x の重みを出力する関数。 int weight(int x) { root(x); return diff_weight.at(x); } //weight.at(y) - weight.at(x) == w となるようにする。 bool unite(int x, int y, int w) { int rx = root(x); int ry = root(y); int diff_weight_to_ry_from_rx = w + weight(x) - weight(y); if (rx == ry) return false; //xの根とyの根が同じなので、何もしない。 if (rank.at(rx) < rank.at(ry)) { parent.at(rx) = ry; diff_weight.at(rx) = -diff_weight_to_ry_from_rx; } else { parent.at(ry) = rx; diff_weight.at(ry) = diff_weight_to_ry_from_rx; if (rank.at(rx) == rank.at(ry)) rank.at(rx)++; } return true; } bool same(int x, int y) { return (root(x) == root(y)); } int count_tree() { int N = parent.size(); int res = 0; rep(i, N) { if (root(i) == i) res++; } return res; } }; // 幾何。二点間距離。 ld calc_dist(int x1, int y1, int x2, int y2) { int tempo = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2); ld res = sqrt((ld)tempo); return res; } //ランレングス圧縮 vector> RunLength(string S) { int N = S.size(); vector> memo; if (N == 1) { memo.push_back(MP(1, S.at(0))); return memo; } int tempo = 1; for (int i = 1; i < N; i++) { if (i != N - 1) { if (S.at(i) == S.at(i - 1)) tempo++; else { memo.push_back(MP(tempo, S.at(i - 1))); tempo = 1; } } else { if (S.at(i) == S.at(i - 1)) { tempo++; memo.push_back(MP(tempo, S.at(i - 1))); } else { memo.push_back(MP(tempo, S.at(i - 1))); memo.push_back(MP(1, S.at(i))); } } } return memo; } void printf_ld(ld res) { printf("%.12Lf\n", res); //cout << std::fixed << std::setprecision(12) << res << endl; } template void print_vec(vector v) { int N = v.size(); rep(i, N) { if (i != N - 1) cout << v.at(i) << " "; else cout << v.at(i) << endl; } } //mint 構造体。自動で mod を取る。 //m は定数である必要があるので入力を用いることはできない。 template class mint { public: T val; //---------- コンストラクタ ---------- constexpr mint(T v = 0) noexcept : val(v% m) { if (val < 0) val += m; } //------------------------------ 二項演算子のオーバーロード ------------------------------ constexpr mint& operator += (const mint& r) noexcept { val += r.val; if (val >= m) val -= m; return *this; } constexpr mint& operator -= (const mint& r) noexcept { val -= r.val; if (val < 0) val += m; return *this; } constexpr mint& operator *= (const mint& r) noexcept { val = val * r.val % m; return *this; } constexpr mint& operator /= (const mint& r) noexcept { //a * u + b * v = 1 を互除法で解く。但し、gcd(a, m) == 1 でなければならない。 T a = r.val, b = m, u = 1, v = 0; while (b) { T q = a / b; a -= q * b; swap(a, b); //互除法。余りをとって swap。 u -= q * v; swap(u, v); } val = val * u % m; if (val < 0) val += m; return *this; } constexpr mint operator + (const mint& r) const noexcept { return mint(*this) += r; } constexpr mint operator - (const mint& r) const noexcept { return mint(*this) -= r; } constexpr mint operator * (const mint& r) const noexcept { return mint(*this) *= r; } constexpr mint operator / (const mint& r) const noexcept { return mint(*this) /= r; } constexpr bool operator == (const mint& r) const noexcept { return this->val == r.val; } constexpr bool operator != (const mint& r) const noexcept { return this->val != r.val; } //------------------------------ 単項演算子のオーバーロード ------------------------------ //---------- 前置インクリメントのオーバーロード ---------- constexpr mint operator ++() noexcept { this->val++; if (this->val >= m) this->val -= m; return mint(*this); } constexpr mint operator --() noexcept { this->val--; if (this->val < 0) this->val += m; return mint(*this); } //---------- 後置インクリメントのオーバーロード ---------- constexpr mint operator++(signed) noexcept { mint temp(val); ++val; if (val >= m) val -= m; return temp; } constexpr mint operator--(signed) noexcept { mint temp(val); --val; if (val < 0) val += m; return temp; } constexpr mint operator -() const noexcept { return mint(-val); } //---------- 入出力のオーバーロード ---------- friend constexpr ostream& operator << (ostream& os, const mint& x) noexcept { return os << x.val; } friend istream& operator >> (istream& is, mint& x) noexcept { T init_val; is >> init_val; x = mint(init_val); return is; } //---------- 繰り返し二乗法 ---------- constexpr mint modpow(const mint& a, T n) noexcept { if (n == 0) return 1; auto t = modpow(a, n / 2); t = t * t; if (n & 1) t = t * a; return t; } //---------- 逆元 ---------- constexpr mint inverse() noexcept { mint e(1); return e / (*this); } //---------- 二項係数 N_C_a ---------- constexpr mint modcomb(const T& N, const T& a) noexcept { if (N < a) return 0; mint answer = 1; rep(i, a) { answer *= mint(N - i); answer *= mint(i + 1).inverse(); } return answer; } }; using modint = mint; ld now_clock() { ld t = (ld)clock() / (ld)CLOCKS_PER_SEC; return t; } //周期問題を解く。 template class rho_loop { private: long long s = -1; // loopのスタート位置 long long period = -1; //loopの周期 U sum_period = 0; //1周期での和 U sum_base = 0; //周期開始前の和 vector A; vector sum; unordered_map cnt; unordered_map pos; public: //コンストラクタ rho_loop() : s(-1), period(-1) {}; //配列にappendして、ループ検出した場合 true を返す。 bool append(U x) { assert(s == -1 && period == -1); A.push_back(x); if (A.size() == 1) sum.push_back(x); else sum.push_back(x + sum.back()); cnt[x]++; if (cnt[x] == 2) { s = pos[x]; period = A.size() - 1 - pos[x]; sum.pop_back(); A.pop_back(); if (s != 0) sum_base = sum.at(s - 1); else sum_base = 0; sum_period = sum.back() - sum_base; return true; } else { pos[x] = (long long)A.size() - 1; return false; } } U get(long long i) { assert(s != -1 && period != -1); if (i <= s) return A.at(i); i -= s; i %= period; return A.at(s + i); } U get_sum(long long i) { assert(s != -1 && period != -1); if (i <= s) return sum.at(i); i -= s; U res = sum_base; res += sum_period * (i / period); i %= period; res += sum.at(s + i) - sum_base; return res; } }; signed main() { ll p, q, r, K; cin >> p >> q >> r >> K; p %= 10; q %= 10; r %= 10; K--; vector A; A.push_back(p); A.push_back(q); A.push_back(r); map, ll> mp; //vector v = A; sort(ALL(v)); //mp[v] = 3; int s = -1; int t = -1; while (true) { int N = A.size(); int temp = A.at(N - 1) + A.at(N - 2) + A.at(N - 3); temp %= 10; A.push_back(temp); vector v; v.push_back(A.at(N - 3)); v.push_back(A.at(N - 2)); v.push_back(A.at(N - 1)); //sort(ALL(v)); //cout << N << " " << A.at(N) << endl; if (mp[v] == 0) { mp[v] = N; } else { s = mp[v]; t = N; break; } } int T = t - s; //cout << s << " " << t << endl; if (K <= s) { cout << A.at(K) << endl; //cout << "A" << endl; //return 0; } else { cout << A.at(s + (K - s) % T) << endl; //cout << "B" << endl; } }