#include using namespace std; using int64 = long long; const int mod = 1e9 + 7; //const int mod = 998244353; const int64 infll = (1LL << 62) - 1; const int inf = (1 << 30) - 1; struct IoSetup { IoSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(10); cerr << fixed << setprecision(10); } } iosetup; template< typename T1, typename T2 > ostream &operator<<(ostream &os, const pair< T1, T2 > &p) { os << p.first << " " << p.second; return os; } template< typename T1, typename T2 > istream &operator>>(istream &is, pair< T1, T2 > &p) { is >> p.first >> p.second; return is; } template< typename T > ostream &operator<<(ostream &os, const vector< T > &v) { for(int i = 0; i < (int) v.size(); i++) { os << v[i] << (i + 1 != v.size() ? " " : ""); } return os; } template< typename T > istream &operator>>(istream &is, vector< T > &v) { for(T &in : v) is >> in; return is; } template< typename T1, typename T2 > inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template< typename T1, typename T2 > inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } template< typename T = int64 > vector< T > make_v(size_t a) { return vector< T >(a); } template< typename T, typename... Ts > auto make_v(size_t a, Ts... ts) { return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...)); } template< typename T, typename V > typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) { t = v; } template< typename T, typename V > typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) { for(auto &e : t) fill_v(e, v); } template< typename F > struct FixPoint : F { FixPoint(F &&f) : F(forward< F >(f)) {} template< typename... Args > decltype(auto) operator()(Args &&... args) const { return F::operator()(*this, forward< Args >(args)...); } }; template< typename F > inline decltype(auto) MFP(F &&f) { return FixPoint< F >{forward< F >(f)}; } /** * @brief Splay-Tree-Base(Splay木) */ template< typename Node > struct SplayTreeBase { public: using NP = Node *; bool is_root(const NP &t) const { return !t->p || (t->p->l != t && t->p->r != t); } inline size_t count(const NP &t) const { return t ? t->sz : 0; } void splay(NP t) { push(t); while(!is_root(t)) { auto *q = t->p; if(!is_root(t)) { push(q), push(t); if(q->l == t) rotr(t); else rotl(t); } else { auto *r = q->p; push(r), push(q), push(t); if(r->l == q) { if(q->l == t) rotr(q), rotr(t); else rotl(t), rotr(t); } else { if(q->r == t) rotl(q), rotl(t); else rotr(t), rotl(t); } } } } NP erase(NP t) { splay(t); Node *x = t->l, *y = t->r; delete t; if(!x) { t = y; if(t) t->p = nullptr; } else if(!y) { t = x; t->p = nullptr; } else { x->p = nullptr; t = get_right(x); splay(t); t->r = y; y->p = t; } return t; } NP splay_front(NP t) { splay(t); while(t->l) t = t->l; splay(t); return t; } NP splay_back(NP t) { splay(t); while(t->r) t = t->r; splay(t); return t; } pair< NP, NP > split(NP t, int k) { if(!t) return {nullptr, nullptr}; push(t); if(k <= count(t->l)) { auto x = split(t->l, k); t->l = x.second; t->p = nullptr; if(x.second) x.second->p = t; return {x.first, update(t)}; } else { auto x = split(t->r, k - count(t->l) - 1); t->r = x.first; t->p = nullptr; if(x.first) x.first->p = t; return {update(t), x.second}; } } template< typename... Args > NP merge(NP p, Args... args) { return merge(p, merge(args...)); } NP merge(NP l, NP r) { if(!l && !r) return nullptr; if(!l) return splay(r), r; if(!r) return splay(l), l; splay(l), splay(r); l = splay_back(l); l->r = r; r->p = l; update(l); return l; } tuple< NP, NP, NP > split3(NP t, int a, int b) { splay(t); auto x = split(t, a); auto y = split(x.second, b - a); return make_tuple(x.first, y.first, y.second); } virtual void push(NP t) = 0; virtual Node *update(NP t) = 0; private: void rotr(NP t) { auto *x = t->p, *y = x->p; if((x->l = t->r)) t->r->p = x; t->r = x, x->p = t; update(x), update(t); if((t->p = y)) { if(y->l == x) y->l = t; if(y->r == x) y->r = t; update(y); } } void rotl(NP t) { auto *x = t->p, *y = x->p; if((x->r = t->l)) t->l->p = x; t->l = x, x->p = t; update(x), update(t); if((t->p = y)) { if(y->l == x) y->l = t; if(y->r == x) y->r = t; update(y); } } NP build(int l, int r, const vector< NP > &v) { if(l + 1 >= r) return v[l]; return merge(build(l, (l + r) >> 1, v), build((l + r) >> 1, r, v)); } protected: NP build_node(const vector< NP > &v) { return build(0, v.size(), v); } NP insert_node(NP t, int k, NP v) { splay(t); auto x = split(t, k); return merge(x.first, v, x.second); } NP erase_node(NP t, int k) { splay(t); auto x = split(t, k); auto y = split(x.second, 1); delete y.first; return merge(x.first, y.second); } }; /** * @brief Reversible-Splay-Tree(反転可能Splay木) */ template< typename Tp > struct ReversibleSplayTreeNode { using T = Tp; ReversibleSplayTreeNode *l, *r, *p; T key, sum; bool rev; ReversibleSplayTreeNode() : ReversibleSplayTreeNode(Tp()) {} ReversibleSplayTreeNode(const T &key) : key(key), sum(key), rev(false), l(nullptr), r(nullptr), p(nullptr) {} }; template< typename Np > struct ReversibleSplayTree : SplayTreeBase< Np > { public: using Node = Np; using T = typename Node::T; using super = SplayTreeBase< Node >; using NP = typename super::NP; using super::splay; using super::split; using super::count; using super::merge; using super::build_node; using super::insert_node; inline const T &sum(const NP t) { return t ? t->sum : 0; } NP alloc(const T &x) { return new Node(x); } T query(NP &t, int a, int b) { splay(t); auto x = split(t, a); auto y = split(x.second, b - a); auto ret = sum(y.first); t = merge(x.first, y.first, y.second); return ret; } NP build(const vector< T > &v) { vector< NP > vs(v.size()); for(int i = 0; i < v.size(); i++) vs[i] = alloc(v[i]); return build_node(vs); } void toggle(NP t) { swap(t->l, t->r); t->rev ^= true; } NP update(NP t) override { t->sum = t->key; if(t->l) t->sum += t->l->sum; if(t->r) t->sum += t->r->sum; return t; } void push(NP t) override { if(t->rev) { if(t->l) toggle(t->l); if(t->r) toggle(t->r); t->rev = false; } } NP insert(NP t, int k, const T &x) { return insert_node(t, k, alloc(x)); } NP set_element(NP t, int k, const T &x) { splay(t); return imp_set_element(t, k, x); } pair< NP, NP > split_lower_bound(NP t, const T &key) { if(!t) return {nullptr, nullptr}; push(t); if(key <= t->key) { auto x = split_lower_bound(t->l, key); t->l = x.second; t->p = nullptr; if(x.second) x.second->p = t; return {x.first, update(t)}; } else { auto x = split_lower_bound(t->r, key); t->r = x.first; t->p = nullptr; if(x.first) x.first->p = t; return {update(t), x.second}; } } private: NP imp_set_element(NP t, int k, const T &x) { push(t); if(k < count(t->l)) { return imp_set_element(t->l, k, x); } else if(k == count(t->l)) { t->key = x; splay(t); return t; } else { return imp_set_element(t->r, k - count(t->l) - 1, x); } } }; template< typename T > using RST = ReversibleSplayTree< ReversibleSplayTreeNode< T > >; /** * @brief Link-Cut-Tree */ template< typename STp > struct LinkCutTree : STp { using ST = STp; using ST::ST; using Node = typename ST::Node; Node *expose(Node *t) { Node *rp = nullptr; for(Node *cur = t; cur; cur = cur->p) { this->splay(cur); cur->r = rp; this->update(cur); rp = cur; } this->splay(t); return rp; } void link(Node *child, Node *parent) { expose(child); expose(parent); child->p = parent; parent->r = child; this->update(parent); } void cut(Node *child) { expose(child); auto *parent = child->l; child->l = nullptr; parent->p = nullptr; this->update(child); } void evert(Node *t) { expose(t); this->toggle(t); this->push(t); } Node *lca(Node *u, Node *v) { expose(u); return expose(v); } Node *get_kth(Node *x, int k) { expose(x); while(x) { this->push(x); if(x->r && x->r->sz > k) { x = x->r; } else { if(x->r) k -= x->r->sz; if(k == 0) return x; k -= 1; x = x->l; } } return nullptr; } Node *get_root(Node *x) { expose(x); while(x->l) { this->push(x); x = x->l; } return x; } }; /** * @brief Union-Find * @docs docs/union-find.md */ struct UnionFind { vector< int > data; UnionFind() = default; explicit UnionFind(size_t sz) : data(sz, -1) {} bool unite(int x, int y) { x = find(x), y = find(y); if(x == y) return false; if(data[x] > data[y]) swap(x, y); data[x] += data[y]; data[y] = x; return true; } int find(int k) { if(data[k] < 0) return (k); return data[k] = find(data[k]); } int size(int k) { return -data[find(k)]; } bool same(int x, int y) { return find(x) == find(y); } }; template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< mod >; int main() { int N, M; cin >> N >> M; using LCT = LinkCutTree< RST< modint > >; LCT lct; vector< LCT::Node * > vs(N), es(M); for(int i = 0; i < N; i++) vs[i] = lct.alloc(0); modint cost = 1; UnionFind uf(N); vector< int > A(M), B(M); vector< int > type(M); vector< vector< pair< int, int > > > g(N); vector< set< int > > qs(N); for(int i = 0; i < M; i++) { cost *= 2; cin >> A[i] >> B[i]; --A[i], --B[i]; es[i] = lct.alloc(cost); if(uf.unite(A[i], B[i])) { lct.evert(vs[A[i]]); lct.link(vs[A[i]], es[i]); lct.link(es[i], vs[B[i]]); g[A[i]].emplace_back(B[i], i); g[B[i]].emplace_back(A[i], i); type[i] = 1; } else { qs[A[i]].emplace(i); qs[B[i]].emplace(i); } } vector< int > dep(N); MFP([&](auto rec, int idx, int par, int d) -> void { dep[idx] = d; for(auto &e : g[idx]) { int to = e.first; if(to != par) { rec(to, idx, d + 1); } } })(0, -1, 0); int Q; cin >> Q; vector< int > ans(Q, -1); vector< int > X(Q), Y(Q), Z(Q); vector< vector< int > > sub(N); for(int i = 0; i < Q; i++) { cin >> X[i] >> Y[i] >> Z[i]; --X[i], --Y[i], --Z[i]; auto check = [&]() -> bool { lct.evert(es[Z[i]]); return lct.lca(vs[X[i]], vs[Y[i]]) != es[Z[i]]; }; if(type[Z[i]] == 0 or check()) { lct.evert(vs[X[i]]); lct.expose(vs[Y[i]]); ans[i] = (vs[Y[i]]->sum).x; } else { sub[dep[A[Z[i]]] > dep[B[Z[i]]] ? A[Z[i]] : B[Z[i]]].emplace_back(i); } } MFP([&](auto rec, int idx, int par) -> void { for(auto &e : g[idx]) { int to = e.first; if(to != par) { rec(to, idx); if(qs[to].empty()) continue; if(sub[to].empty()) continue; { lct.evert(es[e.second]); lct.cut(vs[idx]); lct.cut(vs[to]); int p = *begin(qs[to]); lct.evert(vs[A[p]]); lct.link(vs[A[p]], es[p]); lct.link(es[p], vs[B[p]]); for(auto &i : sub[to]) { lct.evert(vs[X[i]]); lct.expose(vs[Y[i]]); ans[i] = (vs[Y[i]]->sum).x; } lct.evert(es[p]); lct.cut(vs[A[p]]); lct.cut(vs[B[p]]); lct.evert(vs[to]); lct.link(vs[to], es[e.second]); lct.link(es[e.second], vs[idx]); } if(qs[idx].size() < qs[to].size()) { qs[idx].swap(qs[to]); } for(auto p : qs[to]) { if(qs[idx].count(p)) qs[idx].erase(p); else qs[idx].emplace(p); } } } })(0, -1); for(int i = 0; i < Q; i++) { cout << ans[i] << "\n"; } }