#include #define REP_(i, a_, b_, a, b, ...) \ for (int i = (a), END_##i = (b); i < END_##i; ++i) #define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__) #define ALL(x) std::begin(x), std::end(x) using i64 = long long; template inline bool chmax(T &a, U b) { return a < b and ((a = std::move(b)), true); } template inline bool chmin(T &a, U b) { return a > b and ((a = std::move(b)), true); } template inline int ssize(const T &a) { return (int) std::size(a); } template std::istream &operator>>(std::istream &is, std::vector &a) { for (auto &x : a) is >> x; return is; } template std::ostream &operator<<(std::ostream &os, const std::pair &a) { return os << "(" << a.first << ", " << a.second << ")"; } template std::ostream &print_seq(const Container &a, std::string_view sep = " ", std::string_view ends = "\n", std::ostream &os = std::cout) { auto b = std::begin(a), e = std::end(a); for (auto it = std::begin(a); it != e; ++it) { if (it != b) os << sep; os << *it; } return os << ends; } template struct is_iterable : std::false_type {}; template struct is_iterable())), decltype(std::end(std::declval()))>> : std::true_type { }; template::value && !std::is_same::value && !std::is_same::value>> std::ostream &operator<<(std::ostream &os, const T &a) { return print_seq(a, ", ", "", (os << "{")) << "}"; } void print() { std::cout << "\n"; } template void print(const T &x) { std::cout << x << "\n"; } template void print(const Head &head, Tail... tail) { std::cout << head << " "; print(tail...); } void read_from_cin() {} template void read_from_cin(T &value, Ts &...args) { std::cin >> value; read_from_cin(args...); } #define INPUT(type, ...) \ type __VA_ARGS__; \ read_from_cin(__VA_ARGS__) #ifdef ENABLE_DEBUG #include "debug_dump.hpp" #else #define DUMP(...) #endif using namespace std; template struct SegTree { using T = typename Monoid::T; int n_; // number of valid leaves. int offset_; // where leaves start std::vector data_; // data size: 2*offset_ inline int size() const { return n_; } inline int offset() const { return offset_; } explicit SegTree(int n) : n_(n) { offset_ = 1; while (offset_ < n_) offset_ <<= 1; data_.assign(2 * offset_, Monoid::id()); } explicit SegTree(const std::vector &leaves) : n_(leaves.size()) { offset_ = 1; while (offset_ < n_) offset_ <<= 1; data_.assign(2 * offset_, Monoid::id()); for (int i = 0; i < n_; ++i) { data_[offset_ + i] = leaves[i]; } for (int i = offset_ - 1; i > 0; --i) { data_[i] = Monoid::op(data_[i * 2], data_[i * 2 + 1]); } } // Sets i-th value (0-indexed) to x. void set(int i, const T &x) { int k = offset_ + i; data_[k] = x; // Update its ancestors. while (k > 1) { k >>= 1; data_[k] = Monoid::op(data_[k * 2], data_[k * 2 + 1]); } } // Queries by [l,r) range (0-indexed, half-open interval). T fold(int l, int r) const { l = std::max(l, 0) + offset_; r = std::min(r, offset_) + offset_; T vleft = Monoid::id(), vright = Monoid::id(); for (; l < r; l >>= 1, r >>= 1) { if (l & 1) vleft = Monoid::op(vleft, data_[l++]); if (r & 1) vright = Monoid::op(data_[--r], vright); } return Monoid::op(vleft, vright); } T fold_all() const { return data_[1]; } // Returns i-th value (0-indexed). T operator[](int i) const { return data_[offset_ + i]; } friend std::ostream &operator<<(std::ostream &os, const SegTree &st) { os << "["; for (int i = 0; i < st.size(); ++i) { if (i != 0) os << ", "; const auto &x = st[i]; os << x; } return os << "]"; } }; struct SumOp { using T = unsigned; static T op(const T &x, const T &y) { return x + y; } static constexpr T id() { return 0; } }; template struct Compressed { std::vector values; explicit Compressed(std::vector v) : values(v) { std::sort(values.begin(), values.end()); values.erase(std::unique(values.begin(), values.end()), values.end()); } int size() const { return values.size(); } int index(T x) const { return std::lower_bound(values.begin(), values.end(), x) - values.begin(); } const T &value(int i) const { return values[i]; } }; // Binary search. // Returns the boundary argument which satisfies pred(x). // // Usage: // auto ok_bound = bisect(ok, ng, [&](i64 x) -> bool { return ...; }); template i64 bisect(i64 true_x, i64 false_x, F pred) { static_assert(std::is_invocable_r_v, "F must be: i64 -> bool"); // To allow negative values, use floor_div() in the loop. assert(true_x >= -1 and false_x >= -1); using u64 = unsigned long long; while (std::abs(true_x - false_x) > 1) { i64 mid = ((u64) true_x + (u64) false_x) / 2; if (pred(mid)) { true_x = std::move(mid); } else { false_x = std::move(mid); } } return true_x; } auto solve() { INPUT(i64, n, K, P); vector A(n), B(n); cin >> A >> B; REP(i, n) { A[i] %= P; B[i] %= P; } auto bb = B; bb.push_back(0); bb.push_back((unsigned) P); Compressed cb(bb); vector fb(cb.size()); for (auto x : B) { int j = cb.index(x); fb[j]++; } SegTree seg(fb); i64 ans = bisect(P, -1, [&](i64 x) { i64 count = 0; REP(i, n) { unsigned a = A[i]; if (a <= x) { int b1 = x + 1 - a; int r = cb.index(b1); count += seg.fold(0, r); int b2 = P - a; int l = cb.index(b2); r = cb.index(P); count += seg.fold(l, r); } else { int b1 = P - a; int l = cb.index(b1); int r = cb.index(P - a + x + 1); count += seg.fold(l, r); } } return count >= K; }); return ans; } int main() { ios_base::sync_with_stdio(false), cin.tie(nullptr); cout << std::fixed << std::setprecision(15); int t = 1; REP(test_case, t) { auto ans = solve(); print(ans); } }