#include #include #include #include // Single-source unorthodox shortest paths // Complexity: O(M log M) // This implementation is based on: https://gist.github.com/wata-orz/d3037bd0b919c76dd9ddc0379e1e3192 template struct SSSUP { int V; std::vector>> to; SSSUP(int n) : V(n), to(n) { static_assert(INF > 0, "INF must be positive"); } void add_edge(int u, int v, T len, G g) { assert(u >= 0 and u < V); assert(v >= 0 and v < V); assert(len >= 0); to[u].emplace_back(v, len, g); to[v].emplace_back(u, len, g.inv()); } private: std::vector dist_sp; std::vector parent_sp, depth_sp; std::vector psi; // psi[path = v0v1...vn] = psi[v0v1] * psi[v1v2] * ... * psi[v(n - 1)vn] std::vector uf_ps; int _find(int x) { if (uf_ps[x] == -1) { return x; } else { return uf_ps[x] = _find(uf_ps[x]); } } void _unite(int r, int c) { uf_ps[c] = r; } public: int s; std::vector dist; void solve(int s_) { s = s_; assert(s >= 0 and s < V); // Solve SSSP { dist_sp.assign(V, INF); depth_sp.assign(V, -1), parent_sp.assign(V, -1); psi.assign(V, e()); std::priority_queue, std::vector>, std::greater>> que; dist_sp[s] = 0, depth_sp[s] = 0; que.emplace(0, s); while (que.size()) { T d, l; int u, v; G g = e(); std::tie(d, u) = que.top(); que.pop(); if (dist_sp[u] != d) continue; for (const auto &p : to[u]) { std::tie(v, l, g) = p; const auto d2 = d + l; if (dist_sp[v] > d2) { dist_sp[v] = d2, depth_sp[v] = depth_sp[u] + 1, parent_sp[v] = u, psi[v] = op(psi[u], g); que.emplace(d2, v); } } } } uf_ps.assign(V, -1); using P = std::tuple; std::priority_queue, std::greater

> que; for (int u = 0; u < V; u++) { for (int i = 0; i < int(to[u].size()); i++) { int v; T l; G g = e(); std::tie(v, l, g) = to[u][i]; if (u < v and !(op(psi[u], g) == psi[v])) que.emplace(dist_sp[u] + dist_sp[v] + l, u, i); } } dist.assign(V, INF); while (que.size()) { T h; int u0, i; std::tie(h, u0, i) = que.top(); que.pop(); const int v0 = std::get<0>(to[u0][i]); int u = _find(u0), v = _find(v0); std::vector bs; while (u != v) { if (depth_sp[u] > depth_sp[v]) { bs.push_back(u), u = _find(parent_sp[u]); } else { bs.push_back(v), v = _find(parent_sp[v]); } } for (const int x : bs) { _unite(u, x); dist[x] = h - dist_sp[x]; for (int i = 0; i < int(to[x].size()); i++) { int y; T l; G g = e(); std::tie(y, l, g) = to[x][i]; if (op(psi[x], g) == psi[y]) { que.emplace(dist[x] + dist_sp[y] + l, x, i); } } } } for (int i = 0; i < V; i++) { if (!(psi[i] == e()) and dist_sp[i] < dist[i]) dist[i] = dist_sp[i]; } } }; struct G { unsigned g; G(unsigned x) : g(x) {} G inv() const { return *this; } bool operator==(const G &x) const { return g == x.g; } }; G op(G x, G y) { return G(x.g ^ y.g); } G e() { return G(0); } #include using namespace std; int main() { int N, M, K; cin >> N >> M >> K; constexpr long long INF = 1LL << 60; SSSUP graph(N); vector> edges; while (M--) { int a, b, c; string x; cin >> a >> b >> c >> x; unsigned m = 0; for (auto c : x) m = m * 2 + c - '0'; a--, b--; graph.add_edge(a, b, c, m); graph.add_edge(b, a, c, m); } graph.solve(N - 1); for (int i = 0; i < N - 1; i++) { cout << (graph.dist[i] == INF ? -1 : graph.dist[i]) << '\n'; } }