mod = 10 #拡張Euclidの互除法 def extgcd(a, b, d = 0): g = a if b == 0: x, y = 1, 0 else: x, y, g = extgcd(b, a % b) x, y = y, x - a // b * y return x, y, g #mod p における逆元 def invmod(a, p): x, y, g = extgcd(a, p) x %= p return x #行列ライブラリ(遅い) class Matrix: def __init__(self, n, m, mat=None): self.n = n self.m = m self.mat = [[0] * self.m for i in range(self.n)] if mat: for i in range(self.n): self.mat[i] = mat[i] def is_square(self): return self.n == self.m def __getitem__(self, key): if isinstance(key, slice): return self.mat[key] else: assert key >= 0 return self.mat[key] def id(n): res = Matrix(n, n) for i in range(n): res[i][i] = 1 return res def __len__(self): return len(self.mat) def __str__(self): return "\n".join(" ".join(map(str, self[i])) for i in range(self.n)) def times(self, k): res = [[0] * self.m for i in range(self.n)] for i in range(self.n): for j in range(self.m): res[i][j] = k * self[i][j] % mod return Matrix(self.n, self.m, res) def __pos__(self): return self def __neg__(self): return self.times(-1) def __add__(self, other): res = [[0] * self.m for i in range(self.n)] for i in range(self.n): for j in range(self.m): res[i][j] = (self[i][j] + other[i][j]) % mod return Matrix(self.n, self.m, res) def __sub__(self, other): res = [[0] * self.m for i in range(self.n)] for i in range(self.n): for j in range(self.m): res[i][j] = (self[i][j] - other[i][j]) % mod return Matrix(self.n, self.m, res) def __mul__(self, other): if other.__class__ == Matrix: res = [[0] * other.m for i in range(self.n)] for i in range(self.n): for k in range(self.m): for j in range(other.m): res[i][j] += self[i][k] * other[k][j] res[i][j] %= mod return Matrix(self.n, other.m, res) else: return self.times(other) def __rmul__(self, other): return self.times(other) def __pow__(self, k): tmp = Matrix(self.n, self.n, self.mat) res = Matrix.id(self.n) while k: if k & 1: res *= tmp tmp *= tmp k >>= 1 return res def determinant(self): res = 1 tmp = Matrix(self.n, self.n, self.mat) for j in range(self.n): if tmp[j][j] == 0: for i in range(j + 1, self.n): if tmp[i][j] != 0: break else: return 0 tmp.mat[j], tmp.mat[i] = tmp.mat[i], tmp.mat[j] res *= -1 inv = invmod(tmp[j][j], mod) for i in range(j + 1, self.n): c = -inv * tmp[i][j] % mod for k in range(self.n): tmp[i][k] += c * tmp[j][k] tmp[i][k] %= mod for i in range(self.n): res *= tmp[i][i] res %= mod return res p, q, r, k = map(int, input().split()) p %= 10; q %= 10; r %= 10 b, m = Matrix(3, 1, [[r], [q], [p]]), Matrix(3, 3, [[1, 1, 1], [1, 0, 0], [0, 1, 0]]) m **= k - 3 ans = m * b print(ans[0][0])