#pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; constexpr ll mod = 998244353; const ll INF = mod * mod; typedef pairP; #define stop char nyaa;cin>>nyaa; #define rep(i,n) for(int i=0;i=0;i--) #define Rep(i,sta,n) for(int i=sta;i=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair LP; typedef long double ld; typedef pair LDP; const ld eps = 1e-12; const ld pi = acosl(-1.0); ll mod_pow(ll x, ll n, ll m = mod) { if (n < 0) { ll res = mod_pow(x, -n, m); return mod_pow(res, m - 2, m); } if (abs(x) >= m)x %= m; if (x < 0)x += m; ll res = 1; while (n) { if (n & 1)res = res * x % m; x = x * x % m; n >>= 1; } return res; } struct modint { ll n; modint() :n(0) { ; } modint(ll m) :n(m) { if (n >= mod)n %= mod; else if (n < 0)n = (n % mod + mod) % mod; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; } modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; } modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, ll n) { if (n == 0)return modint(1); modint res = (a * a) ^ (n / 2); if (n % 2)res = res * a; return res; } ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } modint operator/=(modint& a, modint b) { a = a / b; return a; } const int max_n = 1 << 18; modint fact[max_n], factinv[max_n]; void init_f() { fact[0] = modint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * modint(i + 1); } factinv[max_n - 1] = modint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * modint(i + 1); } } modint comb(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[b] * factinv[a - b]; } modint combP(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[a - b]; } struct edge { int to; ll cap; int rev; }; struct Dinic { int n; vector> v; vector dist, iter; Dinic(int sz) :n(sz), v(sz), dist(sz), iter(sz) {} void addedge(int from, int to, ll cap) { int x = v[to].size(), y = v[from].size(); v[from].push_back({ to,cap,x }); v[to].push_back({ from,0,y }); } void bfs(int s) { fill(dist.begin(), dist.end(), -1); queue q; dist[s] = 0; q.push(s); while (q.size()) { int x = q.front(); q.pop(); rep(i, v[x].size()) { edge& e = v[x][i]; if (e.cap > 0 && dist[e.to] < 0) { dist[e.to] = dist[x] + 1; q.push(e.to); } } } } ll dfs(int x, int t, ll f) { if (x == t)return f; for (int& i = iter[x]; i < (int)v[x].size(); ++i) { edge& e = v[x][i]; if (e.cap > 0 && dist[x] < dist[e.to]) { ll d = dfs(e.to, t, min(f, e.cap)); if (d > 0) { e.cap -= d; v[e.to][e.rev].cap += d; return d; } } } return 0; } ll max_flow(int s, int t) { ll flow = 0; while (1) { bfs(s); if (dist[t] < 0)return flow; fill(iter.begin(), iter.end(), 0); ll f; while ((f = dfs(s, t, 1LL << 62)) > 0)flow += f; } } }; struct uf { private: vector par, ran; public: uf(int n) { par.resize(n, 0); ran.resize(n, 0); rep(i, n) { par[i] = i; } } int find(int x) { if (par[x] == x)return x; else return par[x] = find(par[x]); } void unite(int x, int y) { x = find(x), y = find(y); if (x == y)return; if (ran[x] < ran[y]) { par[x] = y; } else { par[y] = x; if (ran[x] == ran[y])ran[x]++; } } bool same(int x, int y) { return find(x) == find(y); } }; void solve() { int n, m, k, l; cin >> n >> m >> k >> l; vector x(l), y(l), z(l); rep(i, l) { cin >> x[i] >> y[i] >> z[i]; x[i]--; y[i]--; } ll ans = 0; vector tran(n), tram(m); vector capn(n), capm(m); rep(i, n)tran[i] = i,capn[i]=1; rep(i, m)tram[i] = i,capm[i]=1; for (int i = k; i >= 0; i--) { Dinic dc(n + m + 2); int s = n + m; int t = s + 1; rep(i, n)dc.addedge(s, i, capn[i]); rep(i, m)dc.addedge(i + n, t, capm[i]); vector> G(n + m); rep(j, l)if (z[j] == i) { int a = tran[x[j]]; int b = tram[y[j]]; dc.addedge(a, b + n, 1); G[a].push_back(b + n); G[b + n].push_back(a); } int f = dc.max_flow(s, t); ll cost = 1 << i; ans += f * cost; vector used(n + m); vector ptran(n), ptram(m); int tmpn = 0; int tmpm = 0; rep(i, n + m)if (!used[i]) { used[i] = true; queue q; q.push(i); vector cur; while (!q.empty()) { int id = q.front(); q.pop(); cur.push_back(id); for (int to : G[id])if (!used[to]) { used[to] = true; q.push(to); } } vector idn, idm; for (int id : cur) { if (id < n)idn.push_back(id); else idm.push_back(id - n); } if (idn.size()) { for (int id : idn)ptran[id] = tmpn; tmpn++; } if (idm.size()) { for (int id : idm)ptram[id] = tmpm; tmpm++; } } vector ncapn(n), ncapm(m); rep(i, n) { ncapn[ptran[i]] += capn[i]; } rep(i, m) { ncapm[ptram[i]] += capm[i]; } rep(i, n)for (edge e : dc.v[i])if (e.to != s && e.cap == 0) { int a = ptran[i]; int b = ptram[e.to - n]; ncapn[a]--; ncapm[b]--; } vector ntran(n), ntram(m); rep(i, n) { ntran[i] = ptran[tran[i]]; } rep(i, m) { ntram[i] = ptram[tram[i]]; } swap(tran, ntran); swap(tram, ntram); swap(capn, ncapn); swap(capm, ncapm); } cout << ans << "\n"; } signed main() { ios::sync_with_stdio(false); cin.tie(0); //cout << fixed << setprecision(12); //init_f(); //init(); //expr(); //int t; cin >> t; rep(i, t) solve(); return 0; }