#include using namespace std; typedef long long ll; typedef pair p_ll; template void debug(T itr1, T itr2) { auto now = itr1; while(now=0; i--) const ll MOD = pow(10,9)+7; const ll LLINF = pow(2,61)-1; const int INF = pow(2,30)-1; vector fac; void c_fac(int x=pow(10,6)+10) { fac.resize(x,true); rep(i,x) fac[i] = i ? (fac[i-1]*i)%MOD : 1; } ll modpow(ll x, ll p) { ll result = 1, now = 1, pm = x; while (now<=p) { if (p&now) { result = result * pm % MOD; } now*=2; pm = pm*pm % MOD; } return result; } ll inv(ll a, ll m=MOD) { ll b = m, x = 1, y = 0; while (b!=0) { int d = a/b; a -= b*d; swap(a,b); x -= y*d; swap(x,y); } return (x+m)%m; } ll nck(ll n, ll k) { return fac[n]*inv(fac[k]*fac[n-k]%MOD)%MOD; } ll gcd(ll a, ll b) { if (a prime; void calc_prime(ll N) { prime.resize(N+1,true); prime[0] = false; prime[1] = false; for (ll i=2; i<=N; i++) { if (!prime[i]) continue; for (ll j=2; i*j<=N; j++) prime[i*j] = false; } } bool issq(ll N) { ll l = 1, r = pow(10,9); while (l!=r) { ll mid = (l+r+1)/2; if (mid*mid<=N) l = mid; else r = mid-1; } return l*l==N; } ll MA = pow(10,6); int main() { ll L, R; cin >> L >> R; calc_prime(MA); // debug(all(prime)); debug(all(sqfree)); assert(1<=L && L<=(ll)1000000000000000000); assert(1<=R && R<=(ll)1000000000000000000); assert(L<=R && R-L<=1000000); ll N = R-L+1; vector num(N); rep(i,N) num[i] = L+i; rep(i,MA+1) { if (!prime[i]) continue; for (ll j=(L+(i-1))/i; i*j<=R; j++) { ll cnt = 0; while (num[i*j-L]%i==0) { cnt++; num[i*j-L] /= i; } if (cnt>=2) num[i*j-L] = -1; } } // debug(all(num)); ll result = 0; rep(i,N) result += num[i]!=-1 && (num[i]==1||!issq(num[i])); cout << result << endl; return 0; }