#include<bits/stdc++.h>
using namespace std;
#include<atcoder/all>
using namespace atcoder;
typedef long long ll;
const long long INF = 1LL<<60;
const double PI = acos(-1.0);
/*const double PI = atan2(0.0,-1.0)*/
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }
#define rep(i, n) for(ll i = 0; i < (ll)(n); i++)
#define rep1(i,aa,n) for(ll i = aa; i <= (ll)(n); i++)
#define ALL(a)  (a).begin(),(a).end()
#define v2d(val1,val2,ini) vector<vector<ll>>(val1,vector<ll>(val2,ini));
#define v3d(val1,val2,val3,ini) vector<vector<vector<ll>>>(val1,vector<vector<ll>>(val2,vector<ll>(val3,ini)));
#define v4d(val1,val2,val3,val4,ini) vector<vector<vector<vector<ll>>>>(val1,vector<vector<vector<ll>>>(val2,vector<<vector<ll>>(val3,vector<ll>(val4,ini))));
#define pqe priority_queue<ll>
#define pqeg priority_queue<ll,vector<ll>,greater<ll>>
#define lcin(...) ll __VA_ARGS__;CINT(__VA_ARGS__)
#define eout(...) COU(__VA_ARGS__);
#define sout(...) SCOU(__VA_ARGS__);
#define scin(...) string __VA_ARGS__;CINT(__VA_ARGS__)
#define lb(aa,val) lower_bound(ALL(aa),val)
#define pb push_back
#define bpc __builtin_popcountll
ll kaijou(ll e){ll r=1;rep(i,e){r*=(i+1);}return r;}
bool kukan(ll t,ll a,ll b){
if(a<=t&&t<=b){
return true;
}else return false;
}

void CINT(){}
template <class Head,class... Tail>
void CINT(Head&& head,Tail&&... tail){
    cin>>head;
    CINT(move(tail)...);
}

void COU(){}
template <class Head,class... Tail>
void COU(Head&& head,Tail&&... tail){
    cout<<head<<endl;
    COU(move(tail)...);
}

void SCOU(){}
template <class Head,class... Tail>
void SCOU(Head&& head,Tail&&... tail){
    cout<<head<<" ";
    SCOU(move(tail)...);
}

template <class T = ll>
T IN(){T x;cin>>x;return (x);}

using pii = pair<ll,ll>;
using v2 = vector<vector<ll>>;
using v1 = vector<ll>;
using v2p = vector<vector<pii>>;
using v1p = vector<pii>;
const ll mo=1000000007;
//const ll mo=998244353;


ll mod_pow(ll N,ll n){
if(n==0) return 1;
ll hh;
hh=n%2;
int tt=mod_pow(N,n/2);
if(hh==0)return tt%mo*tt%mo;
else {return tt%mo*tt%mo*N%mo;}
}


long long extGCD(long long a, long long b, long long &x, long long &y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    long long d = extGCD(b, a%b, y, x); // 再帰的に解く
    y-=a/b*x; 
    return d;
}

// 逆元計算 (ここでは a と m が互いに素であることが必要)
long long modinv(long long a, long long m) {
    long long x, y;
    extGCD(a, m, x, y);
    return (x+m)%m; // 気持ち的には x % m だが、x が負かもしれないので
}

int main(){

//cout<<fixed<<setprecision(15);

lcin(n);
v1 aa(10);
rep(i,9){
lcin(t);
aa[i]=t;
}
v1 kai(n+10,0);
v1 juu(9,0);
kai[0]=1;
rep1(i,1,n+9){
kai[i]=i*kai[i-1];
kai[i]%=mo;
}

rep(i,9){
juu[i]=i+1;
rep(k,n-1){
juu[i]=juu[i]*10+i+1;
juu[i]%=mo;
}
}

ll e=kai[n-1];
rep(i,9){
if(aa[i]==0)continue;
e*=modinv(aa[i],mo);
}

ll ans=0;
rep(i,9){
if(aa[i]==0)continue;
ans+=e*juu[i]*aa[i];
ans%=mo;
}
eout(ans);


}