# require "/template" # require "./scanner" # ### Specifications # # ```plain # Inside input macro | Expanded code # ----------------------------------------------+--------------------------------------- # Uppercase string: Int32, Int64, Float64, etc. | {}.new(Scanner.s) # s | Scanner.s # c | Scanner.c # Other lowercase string: i, i64, f, etc. | Scanner.s.to_{} # operator[]: type[size] | Array.new(input(size)) { input(type) } # Tuple literal: {t1, t2, t3} | {input(t1), input(t2), input(t3)} # Array literal: [t1, t2, t3] | [input(t1), input(t2), input(t3)] # Range literal: t1..t2 | input(t1)..input(t2) # If: cond ? t1 : t2 | cond ? input(t1) : input(t2) # Assign: target = value | target = input(value) # ``` # # ### Examples # # Input: # ```plain # 5 3 # foo bar # 1 2 3 4 5 # ``` # ``` # n, m = input(Int32, Int64) # => {5, 10i64} # input(String, Char[m]) # => {"foo", ['b', 'a', 'r']} # input(Int32[n]) # => [1, 2, 3, 4, 5] # ``` # ``` # n, m = input(i, i64) # => {5, 10i64} # input(s, c[m]) # => {"foo", ['b', 'a', 'r']} # input(i[n]) # => [1, 2, 3, 4, 5] # ``` # # Input: # ```plain # 2 3 # 1 2 3 # 4 5 6 # ``` # # ``` # h, w = input(i, i) # => {2, 3} # input(i[h, w]) # => [[1, 2, 3], [4, 5, 6]] # ``` # ``` # input(i[i][i]) # => [[1, 2, 3], [4, 5, 6]] # ``` # # Input: # ```plain # 5 3 # 3 1 4 2 5 # 1 2 # 2 3 # 3 1 # ``` # ``` # n, m = input(i, i) # => {5, 3} # input(i.pred[n]) # => [2, 0, 3, 1, 4] # input({i - 1, i - 1}[m]) # => [{0, 1}, {1, 2}, {2, 0}] # ``` # # Input: # ```plain # 3 # 1 2 # 2 2 # 3 2 # ``` # ``` # input({tmp = i, tmp == 1 ? i : i.pred}[i]) # => [{1, 2}, {2, 1}, {3, 1}] # ``` # # Input: # ```plain # 3 # 1 2 # 2 3 # 3 1 # ``` # ``` # n = input(i) # input_column({Int32, Int32}, n) # => {[1, 2, 3], [2, 3, 1]} # ``` class Scanner private def self.skip_to_not_space peek = STDIN.peek not_space = peek.index { |x| x != 32 && x != 10 } || peek.size STDIN.skip(not_space) end def self.c skip_to_not_space STDIN.read_char.not_nil! end def self.s skip_to_not_space peek = STDIN.peek if index = peek.index { |x| x == 32 || x == 10 } STDIN.skip(index + 1) return String.new(peek[0, index]) end String.build do |buffer| loop do buffer.write peek STDIN.skip(peek.size) peek = STDIN.peek break if peek.empty? if index = peek.index { |x| x == 32 || x == 10 } buffer.write peek[0, index] STDIN.skip(index) break end end end end end macro internal_input(type, else_ast) {% if Scanner.class.has_method?(type.id) %} Scanner.{{type.id}} {% elsif type.stringify == "String" %} Scanner.s {% elsif type.stringify == "Char" %} Scanner.c {% elsif type.stringify =~ /[A-Z][a-z0-9_]*/ %} {{type.id}}.new(Scanner.s) {% elsif String.has_method?("to_#{type}".id) %} Scanner.s.to_{{type.id}} {% else %} {{else_ast}} {% end %} end macro internal_input_array(type, args) {% for i in 0...args.size %} %size{i} = input({{args[i]}}) {% end %} {% begin %} {% for i in 0...args.size %} Array.new(%size{i}) { {% end %} input({{type.id}}) {% for i in 0...args.size %} } {% end %} {% end %} end macro input(type) {% if type.is_a?(Call) %} {% if type.receiver.is_a?(Nop) %} internal_input( {{type.name}}, {{type.name}}( {% for argument in type.args %} input({{argument}}), {% end %} ) ) {% elsif type.name.stringify == "[]" %} internal_input_array({{type.receiver}}, {{type.args}}) {% else %} input({{type.receiver}}).{{type.name.id}}( {% for argument in type.args %} input({{argument}}), {% end %} ) {{type.block}} {% end %} {% elsif type.is_a?(TupleLiteral) %} { {% for i in 0...type.size %} input({{type[i]}}), {% end %} } {% elsif type.is_a?(ArrayLiteral) %} [ {% for i in 0...type.size %} input({{type[i]}}), {% end %} ] {% elsif type.is_a?(RangeLiteral) %} Range.new(input({{type.begin}}), input({{type.end}}), {{type.excludes_end?}}) {% elsif type.is_a?(If) %} {{type.cond}} ? input({{type.then}}) : input({{type.else}}) {% elsif type.is_a?(Assign) %} {{type.target}} = input({{type.value}}) {% else %} internal_input({{type.id}}, {{type.id}}) {% end %} end macro input(*types) { {% for type in types %} input({{type}}), {% end %} } end macro input_column(types, size) {% for type, i in types %} %array{i} = Array({{type}}).new({{size}}) {% end %} {{size}}.times do {% for type, i in types %} %array{i} << input({{type}}) {% end %} end { {% for type, i in types %} %array{i}, {% end %} } end # require "./tuple/times" struct Tuple def times(&block) : Nil {% begin %} {% for i in 0...@type.size %} {% if @type[i].has_method?(:each) %} self[{{i}}].each do |i{{i}}| {% else %} self[{{i}}].times do |i{{i}}| {% end %} {% end %} yield({% for i in 0...@type.size %} i{{i}}, {% end %}) {% for i in 0...@type.size %} end {% end %} {% end %} end private class TimesIterator(T) include Iterator(T) def initialize(@n : T) tuple = {% begin %} { {% for i in 0...T.size %} T[{{i}}].zero, {% end %} } {% end %} @index = tuple.as(T) @first = true end def next if @first @first = false return @index end {% begin %} {% type = @type.type_vars[0] size = type.size %} {% for i in 1..size %} if @index[{{size - i}}] < @n[{{size - i}}] - 1 @index = { {% for j in 0...size %} {% if j < size - i %} @index[{{j}}], {% elsif j == size - i %} @index[{{j}}] + 1, {% else %} {{type[j]}}.zero, {% end %} {% end %} } return @index end {% end %} stop {% end %} end end def times TimesIterator(self).new(self) end end # require "./comparable/min_max" module Comparable(T) def min(x : T) self > x ? x : self end def max(x : T) self < x ? x : self end end # require "./array/new" class Array def self.new(sizes : Tuple(*T), initial_value) forall T {% begin %} {% for i in 0...T.size %} Array.new(sizes[{{i}}]) { {% end %} initial_value {% for i in 0...T.size %} } {% end %} {% end %} end def self.new(sizes : Tuple(*T), &block) forall T {% begin %} {% for i in 0...T.size %} Array.new(sizes[{{i}}]) { |%i{i}| {% end %} yield({% for i in 0...T.size %} %i{i}, {% end %}) {% for i in 0...T.size %} } {% end %} {% end %} end end # require "./array/change" class Array(T) def chmin(i : Int, value : T) (self[i] > value).tap do |f| self[i] = value if f end end protected def chmin(i : Int, *indexes, value) self[i].chmin(*indexes, value: value) end def chmin(indexes : Tuple, value) chmin(*indexes, value: value) end def chmax(i : Int, value : T) (self[i] < value).tap do |f| self[i] = value if f end end protected def chmax(i : Int, *indexes, value) self[i].chmax(*indexes, value: value) end def chmax(indexes : Tuple, value) chmax(*indexes, value: value) end end # require "/point" struct Point include Comparable(Point) extend Indexable(Point) property y : Int32, x : Int32 Direction4 = [Point.up, Point.left, Point.down, Point.right] Direction8 = Direction4 + [Point.ul, Point.ur, Point.dl, Point.dr] class_getter! height : Int32, width : Int32 def self.set_range(height : Int32, width : Int32) raise ArgumentError.new unless 0 < height && 0 < width @@height, @@width = height, width end def self.size height * width end def self.unsafe_fetch(index : Int) Point.new(index // Point.width, index % Point.width) end def initialize @y, @x = 0, 0 end def initialize(@y : Int32, @x : Int32) end def initialize(i : Int32) raise ArgumentError.new unless 0 <= i && i < Point.size @y, @x = i // Point.width, i % Point.width end def self.from(array : Array(Int32)) : self raise ArgumentError.new unless array.size == 2 Point.new(array.unsafe_fetch(0), array.unsafe_fetch(1)) end def self.[](y : Int32, x : Int32) : self Point.new(y, x) end private macro define_direction(name, dy, dx) def self.{{name}} Point.new({{dy}}, {{dx}}) end def {{name}} Point.new(y + {{dy}}, x + {{dx}}) end end define_direction(zero, 0, 0) define_direction(up, -1, 0) define_direction(left, 0, -1) define_direction(down, 1, 0) define_direction(right, 0, 1) define_direction(ul, -1, -1) define_direction(ur, -1, 1) define_direction(dl, 1, -1) define_direction(dr, 1, 1) {% for op in %w[+ - * // %] %} def {{op.id}}(other : Point) Point.new(y {{op.id}} other.y, x {{op.id}} other.x) end def {{op.id}}(other : Int32) Point.new(y {{op.id}} other, x {{op.id}} other) end {% end %} def xy Point.new(x, y) end def yx self end def ==(other : Point) x == other.x && y == other.y end def <=>(other : Point) to_i <=> other.to_i end def [](i : Int32) return y if i == 0 return x if i == 1 raise IndexError.new end def succ raise IndexError.new unless in_range? && self != Point.last if x < Point.width - 1 Point.new(y, x + 1) else Point.new(y + 1, 0) end end def pred raise IndexError.new unless in_range? && self != Point.first if x > 0 Point.new(y, x - 1) else Point.new(y - 1, Point.width - 1) end end def in_range? (0...Point.height).includes?(y) && (0...Point.width).includes?(x) end def to_i : Int32 raise IndexError.new unless in_range? y * Point.width + x end def distance_square(other : Point) (y - other.y) ** 2 + (x - other.x) ** 2 end def distance(other : Point) Math.sqrt(distance_square(other)) end def manhattan(other : Point) (y - other.y).abs + (x - other.x).abs end def chebyshev(other : Point) Math.max((y - other.y).abs, (x - other.x).abs) end {% for i in [4, 8] %} def adjacent{{i}}(&block) : Nil Direction{{i}}.each do |d| yield self + d end end def adjacent{{i}} Direction{{i}}.each.map { |p| self + p } end def adj{{i}}_in_range(&block) : Nil Direction{{i}}.each do |d| point = self + d yield point if point.in_range? end end def adj{{i}}_in_range adjacent{{i}}.select(&.in_range?) end {% end %} def to_s(io : IO) : Nil io << '(' << y << ", " << x << ')' end def inspect(io : IO) : Nil to_s(io) end def to_direction_char?(lrud = "LRUD") : Char? if y == 0 && x != 0 x < 0 ? lrud[0] : lrud[1] elsif x == 0 && y != 0 y < 0 ? lrud[2] : lrud[3] end end def self.to_direction?(c : Char, lrud = "LRUD") raise ArgumentError.new unless lrud.size == 4 lrud.index(c).try { |i| {left, right, up, down}[i] } end def self.to_direction?(s : String, lrud = "LRUD") case s.size when 1 to_direction?(s[0], lrud) when 2 p1 = to_direction?(s[0], lrud) || return nil p2 = to_direction?(s[1], lrud) || return nil return nil unless p1.x ^ p2.x != 0 && p1.y ^ p2.y != 0 p1 + p2 end end end module Indexable(T) private def check_index_out_of_bounds(point : Point) check_index_out_of_bounds(point) { raise IndexError.new } end private def check_index_out_of_bounds(point : Point) if 0 <= point.y < size && 0 <= point.x < unsafe_fetch(point.y).size point else yield end end def fetch(point : Point) point = check_index_out_of_bounds(point) do return yield point end unsafe_fetch(point.y)[point.x] end def [](point : Point) fetch(point) { raise IndexError.new } end def []?(point : Point) fetch(point, nil) end end class Array(T) def []=(point : Point, value) index = check_index_out_of_bounds point @buffer[index.y][index.x] = value end end # require "/graph/dijkstra" # require "../../atcoder/src/PriorityQueue" # ac-library.cr by hakatashi https://github.com/google/ac-library.cr # # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. module AtCoder # Implements standard priority queue like [std::priority_queue](https://en.cppreference.com/w/cpp/container/priority_queue). # # ``` # q = AtCoder::PriorityQueue(Int64).new # q << 1_i64 # q << 3_i64 # q << 2_i64 # q.pop # => 3 # q.pop # => 2 # q.pop # => 1 # ``` class PriorityQueue(T) getter heap : Array(T) def initialize initialize { |a, b| a <= b } end # Initializes queue with the custom comperator. # # If the second argument `b` should be popped earlier than # the first argument `a`, return `true`. Else, return `false`. # # ``` # q = AtCoder::PriorityQueue(Int64).new { |a, b| a >= b } # q << 1_i64 # q << 3_i64 # q << 2_i64 # q.pop # => 1 # q.pop # => 2 # q.pop # => 3 # ``` def initialize(&block : T, T -> Bool) @heap = Array(T).new @compare_proc = block end # Pushes value into the queue. def push(v : T) @heap << v index = @heap.size - 1 while index != 0 parent = (index - 1) // 2 if @compare_proc.call(@heap[index], @heap[parent]) break end @heap[parent], @heap[index] = @heap[index], @heap[parent] index = parent end end # Alias of `push` def <<(v : T) push(v) end # Pops value from the queue. def pop if @heap.size == 0 return nil end if @heap.size == 1 return @heap.pop end ret = @heap.first @heap[0] = @heap.pop index = 0 while index * 2 + 1 < @heap.size child = if index * 2 + 2 < @heap.size && !@compare_proc.call(@heap[index * 2 + 2], @heap[index * 2 + 1]) index * 2 + 2 else index * 2 + 1 end if @compare_proc.call(@heap[child], @heap[index]) break end @heap[child], @heap[index] = @heap[index], @heap[child] index = child end ret end # Returns `true` if the queue is empty. delegate :empty?, to: @heap # Returns size of the queue. delegate :size, to: @heap end end # require "../graph" # require "./graph/edge" struct WeightedEdge(T) include Comparable(WeightedEdge(T)) property to : Int32, cost : T def initialize(@to, @cost : T) end def <=>(other : WeightedEdge(T)) {cost, to} <=> {other.cost, other.to} end def to_s(io) : Nil io << '(' << to << ", " << cost << ')' end def inspect(io) : Nil io << "->#{to}(#{cost})" end end struct WeightedEdge2(T) include Comparable(WeightedEdge2(T)) property from : Int32, to : Int32, cost : T def initialize(@from, @to, @cost : T) end def initialize(@from, edge : WeightedEdge(T)) @to, @cost = edge.to, edge.cost end def <=>(other : WeightedEdge2(T)) {cost, from, to} <=> {other.cost, other.from, other.to} end def reverse WeightedEdge2(T).new(to, from, cost) end def sort WeightedEdge2(T).new(*{to, from}.minmax, cost) end def to_s(io) : Nil io << '(' << from << ", " << to << ", " << cost << ')' end def inspect(io) : Nil io << from << "->" << to << '(' << cost << ')' end end struct UnweightedEdge property to : Int32 def initialize(@to) end def cost 1 end def to_s(io) : Nil io << to end def inspect(io) : Nil io << "->" << to end end struct UnweightedEdge2 property from : Int32, to : Int32 def initialize(@from, @to) end def initialize(@from, edge : UnweightedEdge) @to = edge.to end def cost 1 end def reverse UnweightedEdge2.new(to, from) end def sort UnweightedEdge2.new(*{to, from}.minmax) end def to_s(io) : Nil io << '(' << from << ", " << to << ')' end def inspect(io) : Nil io << from << "->" << to end end module Graph(Edge, Edge2) include Enumerable(Edge2) getter graph : Array(Array(Edge)) def initialize(size : Int) @graph = Array(Array(Edge)).new(size) { [] of Edge } end def initialize(size : Int, edges : Enumerable) initialize(size) add_edges(edges) end # Add *edge*. abstract def <<(edge : Edge2) # :ditto: def <<(edge : Tuple) self << Edge2.new(*edge) end def add_edges(edges : Enumerable) edges.each { |edge| self << edge } end delegate size, to: @graph delegate :[], to: @graph # Yields each edge of the graph, ans returns `nil`. def each(&) : Nil (0...size).each do |v| self[v].each do |edge| yield Edge2.new(v, edge) end end end def reverse if self.class.directed? each_with_object(self.class.new(size)) do |edge, reversed| reversed << edge.reverse end else dup end end def to_undirected if self.class.directed? each_with_object(self.class.new(size)) do |edge, graph| graph << edge graph << edge.reverse if self.class.directed? end else dup end end def to_s(io : IO) : Nil io << '[' join(", ", io) do |edge, io| edge.inspect io end io << ']' end def inspect(io : IO) : Nil to_s(io) end end class DirectedGraph(T) include Graph(WeightedEdge(T), WeightedEdge2(T)) def initialize(size : Int) super end def initialize(size : Int, edges : Enumerable(WeightedEdge2(T))) super end def initialize(size : Int, edges : Enumerable({Int32, Int32, T})) super end def <<(edge : WeightedEdge2(T)) raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size @graph[edge.from] << WeightedEdge.new(edge.to, edge.cost) self end def self.weighted? true end def self.directed? true end end class UndirectedGraph(T) include Graph(WeightedEdge(T), WeightedEdge2(T)) def initialize(size : Int) super end def initialize(size : Int, edges : Enumerable(WeightedEdge2(T))) super end def initialize(size : Int, edges : Enumerable({Int32, Int32, T})) super end def <<(edge : WeightedEdge2(T)) raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size @graph[edge.from] << WeightedEdge.new(edge.to, edge.cost) @graph[edge.to] << WeightedEdge.new(edge.from, edge.cost) self end def self.weighted? true end def self.directed? false end end class UnweightedDirectedGraph include Graph(UnweightedEdge, UnweightedEdge2) def initialize(size : Int) super end def initialize(size : Int, edges : Enumerable) super end def <<(edge : UnweightedEdge2) raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size @graph[edge.from] << UnweightedEdge.new(edge.to) self end def self.weighted? false end def self.directed? true end end class UnweightedUndirectedGraph include Graph(UnweightedEdge, UnweightedEdge2) def initialize(size : Int) super end def initialize(size : Int, edges : Enumerable) super end def <<(edge : UnweightedEdge2) raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size @graph[edge.from] << UnweightedEdge.new(edge.to) @graph[edge.to] << UnweightedEdge.new(edge.from) self end def each_child(vertex : Int, parent, &block) : Nil graph[vertex].each do |u| yield u if u != parent end end def each_child(vertex : Int, parent) graph[vertex].each.select { |u| u != parent } end def self.weighted? false end def self.directed? false end end module Graph(Edge, Edge2) # Returns the array of distance of each node from *start* or `nil`. def dijkstra(start : Int32) raise ArgumentError.new unless 0 <= start < size que = AtCoder::PriorityQueue({Int32, typeof(first.cost)}).new { |(v1, d1), (v2, d2)| d1 > d2 } que << {start, typeof(first.cost).zero} dist = Array(typeof(first.cost)?).new(size, nil) dist[start] = typeof(first.cost).zero while vd = que.pop v, d = vd next if dist[v].try { |dist_v| dist_v < d } current_dist = dist[v].not_nil! graph[v].each do |edge| next_dist = current_dist + edge.cost if dist[edge.to].nil? || dist[edge.to].not_nil! > next_dist dist[edge.to] = next_dist que << {edge.to, next_dist} end end end dist end # Returns the array of distance of each node from *start*. def dijkstra!(start : Int32) dijkstra(start).map(&.not_nil!) end end h, w = input(i, i) u, d, r, l, k, p = input(i64, i64, i64, i64, i64, i64) start, goal = input({i - 1, i - 1}, {i - 1, i - 1}) start, goal = Point[*start], Point[*goal] s = input(String[h]) Point.set_range(h, w) dir_to_cost = {'U' => u, 'D' => d, 'R' => r, 'L' => l} g = DirectedGraph(Int64).new h * w Point.each do |point| next if s[point] == '#' point.adj4_in_range do |adj| cost = dir_to_cost[(adj - point).to_direction_char?.not_nil!] case s[adj] when '.' g << {point.to_i, adj.to_i, cost} when '@' g << {point.to_i, adj.to_i, cost + p} end end end puts (g.dijkstra(start.to_i)[goal.to_i] || 10i64**18) <= k ? "Yes" : "No"