#include #ifdef DEBUG #include #else #define dump(...) ((void)0) #endif template bool chmin(T &a, const U &b) { return (a > b ? a = b, true : false); } template bool chmax(T &a, const U &b) { return (a < b ? a = b, true : false); } template void fill_array(T (&a)[N], const U &v) { std::fill((U *) a, (U *) (a + N), v); } template auto make_vector(const std::array &a, T value = T()) { static_assert(I >= 1); static_assert(N >= 1); if constexpr (I == 1) { return std::vector(a[N - I], value); } else { return std::vector(a[N - I], make_vector(a, value)); } } template std::ostream &operator<<(std::ostream &s, const std::vector &a) { for (auto it = a.begin(); it != a.end(); ++it) { if (it != a.begin()) s << " "; s << *it; } return s; } template std::istream &operator>>(std::istream &s, std::vector &a) { for (auto &x : a) s >> x; return s; } std::string YesNo(bool value) { return value ? "Yes" : "No"; } std::string YESNO(bool value) { return value ? "YES" : "NO"; } std::string yesno(bool value) { return value ? "yes" : "no"; } template void putl(const T &value) { std::cout << value << "\n"; } template void putl(const Head head, const Tail &... tail) { std::cout << head << " "; putl(tail...); } namespace haar_lib { template struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template struct graph { using weight_type = T; using edge_type = edge; std::vector>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template using tree = graph; } // namespace haar_lib namespace haar_lib { template class hl_decomposition { int n_; std::vector sub_, // subtree size par_, // parent id head_, // chain head id id_, // id[original id] = hld id rid_, // rid[hld id] = original id next_, // next node in a chain end_; // int dfs_sub(tree &tr, int cur, int p) { par_[cur] = p; int t = 0; for (auto &e : tr[cur]) { if (e.to == p) continue; sub_[cur] += dfs_sub(tr, e.to, cur); if (sub_[e.to] > t) { t = sub_[e.to]; next_[cur] = e.to; std::swap(e, tr[cur][0]); } } return sub_[cur]; } void dfs_build(const tree &tr, int cur, int &i) { id_[cur] = i; rid_[i] = cur; ++i; for (auto &e : tr[cur]) { if (e.to == par_[cur]) continue; head_[e.to] = (e.to == tr[cur][0].to ? head_[cur] : e.to); dfs_build(tr, e.to, i); } end_[cur] = i; } public: hl_decomposition() {} hl_decomposition(tree tr, int root) : n_(tr.size()), sub_(n_, 1), par_(n_, -1), head_(n_), id_(n_), rid_(n_), next_(n_, -1), end_(n_, -1) { dfs_sub(tr, root, -1); int i = 0; dfs_build(tr, root, i); } std::vector> path_query_vertex(int x, int y) const { std::vector> ret; const int w = lca(x, y); { int y = w; bool d = true; while (1) { if (id_[x] > id_[y]) std::swap(x, y), d = not d; int l = std::max(id_[head_[y]], id_[x]), r = id_[y] + 1; if (l != r) ret.emplace_back(l, r, d); if (head_[x] == head_[y]) break; y = par_[head_[y]]; } } x = y; y = w; { std::vector> temp; bool d = false; while (1) { if (id_[x] > id_[y]) std::swap(x, y), d = not d; int l = std::max({id_[head_[y]], id_[x], id_[w] + 1}), r = id_[y] + 1; if (l != r) temp.emplace_back(l, r, d); if (head_[x] == head_[y]) break; y = par_[head_[y]]; } std::reverse(temp.begin(), temp.end()); ret.insert(ret.end(), temp.begin(), temp.end()); } return ret; } std::vector> path_query_edge(int x, int y) const { std::vector> ret; while (1) { if (id_[x] > id_[y]) std::swap(x, y); if (head_[x] == head_[y]) { if (x != y) ret.emplace_back(id_[x] + 1, id_[y] + 1); break; } ret.emplace_back(id_[head_[y]], id_[y] + 1); y = par_[head_[y]]; } return ret; } std::pair subtree_query_edge(int x) const { return {id_[x] + 1, end_[x]}; } std::pair subtree_query_vertex(int x) const { return {id_[x], end_[x]}; } int get_edge_id(int u, int v) const { // 辺に対応するid if (par_[u] == v) return id_[u]; if (par_[v] == u) return id_[v]; return -1; } int parent(int x) const { return par_[x]; }; int lca(int u, int v) const { while (1) { if (id_[u] > id_[v]) std::swap(u, v); if (head_[u] == head_[v]) return u; v = par_[head_[v]]; } } int get_id(int x) const { return id_[x]; } }; } // namespace haar_lib namespace haar_lib { template class segment_tree { public: using value_type = typename Monoid::value_type; private: Monoid M_; int depth_, size_, hsize_; std::vector data_; public: segment_tree() {} segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1), size_(1 << depth_), hsize_(size_ / 2), data_(size_, M_()) {} auto operator[](int i) const { assert(0 <= i and i < hsize_); return data_[hsize_ + i]; } auto fold(int l, int r) const { assert(0 <= l and l <= r and r <= hsize_); value_type ret_left = M_(); value_type ret_right = M_(); int L = l + hsize_, R = r + hsize_; while (L < R) { if (R & 1) ret_right = M_(data_[--R], ret_right); if (L & 1) ret_left = M_(ret_left, data_[L++]); L >>= 1, R >>= 1; } return M_(ret_left, ret_right); } auto fold_all() const { return data_[1]; } void set(int i, const value_type &x) { assert(0 <= i and i < hsize_); i += hsize_; data_[i] = x; while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]); } void update(int i, const value_type &x) { assert(0 <= i and i < hsize_); i += hsize_; data_[i] = M_(data_[i], x); while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]); } template void init_with_vector(const std::vector &val) { data_.assign(size_, M_()); for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = val[i]; for (int i = hsize_; --i >= 1;) data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]); } template void init(const T &val) { init_with_vector(std::vector(hsize_, val)); } private: template int bound(const int l, const int r, value_type x, F f) const { std::vector pl, pr; int L = l + hsize_; int R = r + hsize_; while (L < R) { if (R & 1) pr.push_back(--R); if (L & 1) pl.push_back(L++); L >>= 1, R >>= 1; } std::reverse(pr.begin(), pr.end()); pl.insert(pl.end(), pr.begin(), pr.end()); value_type a = M_(); for (int i : pl) { auto b = M_(a, data_[i]); if ((Lower and not f(b, x)) or (not Lower and f(x, b))) { while (i < hsize_) { const auto c = M_(a, data_[i << 1 | 0]); if ((Lower and not f(c, x)) or (not Lower and f(x, c))) { i = i << 1 | 0; } else { a = c; i = i << 1 | 1; } } return i - hsize_; } a = b; } return r; } public: template > int lower_bound(int l, int r, value_type x, F f = F()) const { return bound(l, r, x, f); } template > int upper_bound(int l, int r, value_type x, F f = F()) const { return bound(l, r, x, f); } }; } // namespace haar_lib namespace haar_lib { template struct bitxor_monoid { using value_type = T; value_type operator()() const { return 0; } value_type operator()(value_type a, value_type b) const { return a ^ b; } }; } // namespace haar_lib namespace haar_lib {} namespace solver { using namespace haar_lib; constexpr int m1000000007 = 1000000007; constexpr int m998244353 = 998244353; void init() { std::cin.tie(0); std::ios::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(12); std::cerr << std::fixed << std::setprecision(12); std::cin.exceptions(std::ios_base::failbit); } void solve() { int N, Q; std::cin >> N >> Q; std::vector C(N); std::cin >> C; graph g(N); g.read<1,false,false>(N - 1); auto hld = hl_decomposition(g, 0); auto seg = segment_tree>(N); for (int i = 0; i < N; ++i) { seg.update(hld.get_id(i), C[i]); } while (Q--) { int t, x, y; std::cin >> t >> x >> y; --x; if (t == 1) { seg.update(hld.get_id(x), y); } else{ auto [l, r] = hld.subtree_query_vertex(x); auto ans = seg.fold(l, r); std::cout << ans << "\n"; } } } } int main() { solver::init(); while (true) { try { solver::solve(); std::cout << std::flush; std::cerr << std::flush; } catch (const std::istream::failure &e) { break; } catch (...) { break; } } return 0; }