#include "bits/stdc++.h" #include #define ALL(x) (x).begin(), (x).end() #define RALL(x) (x).rbegin(), (x).rend() #define SZ(x) ((lint)(x).size()) #define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i=i##_begin_;--i) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) #define endk '\n' using namespace std; typedef unsigned long long _ulong; typedef int lint; typedef long double ld; typedef pair plint; typedef pair pld; struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; template auto add = [](T a, T b) -> T { return a + b; }; template auto f_max = [](T a, T b) -> T { return max(a, b); }; template auto f_min = [](T a, T b) -> T { return min(a, b); }; template using V = vector; using Vl = V; using VVl = V; template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) { for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : ""); return os; } template< typename T >istream& operator>>(istream& is, vector< T >& v) { for (T& in : v) is >> in; return is; } template bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } template T div_floor(T a, T b) { if (b < 0) a *= -1, b *= -1; return a >= 0 ? a / b : (a + 1) / b - 1; } template T div_ceil(T a, T b) { if (b < 0) a *= -1, b *= -1; return a > 0 ? (a - 1) / b + 1 : a / b; } template struct rec { F f; rec(F&& f_) : f(std::forward(f_)) {} template auto operator()(Args &&... args) const { return f(*this, std::forward(args)...); } }; lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); } lint digit(lint a) { return (lint)log10(a); } lint e_dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); } lint m_dist(plint a, plint b) { return abs(a.first - b.first) + abs(a.second - b.second); } bool check_overflow(lint a, lint b, lint limit) { if (b == 0) return false; return a > limit / b; } // a * b > c => true void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); } const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 1e18; lint dx[8] = { -1, 1, 0, 0, 1, -1, 1, -1 }, dy[8] = { 0, 0, 1, -1, -1, -1, 1, 1 }; bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endl; return flag; } struct Edge { lint from, to; string cost; Edge() { } Edge(lint u, lint v, string c) { cost = c; from = u; to = v; } bool operator<(const Edge& e) const { if (SZ(cost) != SZ(e.cost)) return SZ(cost) < SZ(e.cost); else return cost < e.cost; } }; struct WeightedEdge { lint to; lint cost; WeightedEdge(lint v, lint c) { to = v; cost = c; } bool operator<(const WeightedEdge& e) const { return cost < e.cost; } }; using WeightedGraph = V>; typedef pair tlint; typedef pair qlint; typedef pair valstr; struct HopcroftKarp { vector< vector< int > > graph; vector< int > dist, match; vector< bool > used, vv; HopcroftKarp(int n, int m) : graph(n), match(m, -1), used(n) {} void add_edge(int u, int v) { graph[u].push_back(v); } void bfs() { dist.assign(graph.size(), -1); queue< int > que; for (int i = 0; i < graph.size(); i++) { if (!used[i]) { que.emplace(i); dist[i] = 0; } } while (!que.empty()) { int a = que.front(); que.pop(); for (auto& b : graph[a]) { int c = match[b]; if (c >= 0 && dist[c] == -1) { dist[c] = dist[a] + 1; que.emplace(c); } } } } bool dfs(int a) { vv[a] = true; for (auto& b : graph[a]) { int c = match[b]; if (c < 0 || (!vv[c] && dist[c] == dist[a] + 1 && dfs(c))) { match[b] = a; used[a] = true; return (true); } } return (false); } int bipartite_matching() { int ret = 0; while (true) { bfs(); vv.assign(graph.size(), false); int flow = 0; for (int i = 0; i < graph.size(); i++) { if (!used[i] && dfs(i)) ++flow; } if (flow == 0) return (ret); ret += flow; } } void output() { for (int i = 0; i < match.size(); i++) { if (~match[i]) { cout << match[i] + 1 << endk; } } } }; int main() { lint N; cin >> N; HopcroftKarp g(N, N); REP(i, N) { lint u, v; cin >> u >> v; u--; v--; g.add_edge(i, u); g.add_edge(i, v); } if (yn(g.bipartite_matching() == N)) { g.output(); } }