import sys sys.setrecursionlimit(200005) int1 = lambda x: int(x)-1 p2D = lambda x: print(*x, sep="\n") def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] inf = 10**16 # md = 998244353 md = 10**9+7 from collections import * class MaxFlow: inf = 10**18 class E: def __init__(self, to, cap): self.to = to self.cap = cap self.rev = None def __init__(self, n): self.n = n self.graph = [[] for _ in range(n)] def add_edge(self, fr, to, cap): graph = self.graph edge = self.E(to, cap) edge2 = self.E(fr, 0) edge.rev = edge2 edge2.rev = edge graph[fr].append(edge) graph[to].append(edge2) def bfs(self, s, t): level = self.level = [self.n]*self.n q = deque([s]) level[s] = 0 while q: now = q.popleft() lw = level[now]+1 for e in self.graph[now]: if e.cap and level[e.to] > lw: level[e.to] = lw if e.to == t: return True q.append(e.to) return False def dfs(self, s, t, up): graph = self.graph it = self.it level = self.level st = deque([t]) while st: v = st[-1] if v == s: st.pop() flow = up for w in st: e = graph[w][it[w]].rev flow = min(flow, e.cap) for w in st: e = graph[w][it[w]] e.cap += flow e.rev.cap -= flow return flow lv = level[v]-1 while it[v] < len(graph[v]): e = graph[v][it[v]] re = e.rev if re.cap == 0 or lv != level[e.to]: it[v] += 1 continue st.append(e.to) break if it[v] == len(graph[v]): st.pop() level[v] = self.n return 0 def flow(self, s, t, flow_limit=inf): flow = 0 while flow < flow_limit and self.bfs(s, t): self.it = [0]*self.n while flow < flow_limit: f = self.dfs(s, t, flow_limit-flow) if f == 0: break flow += f return flow def min_cut(self, s): visited = [0]*self.n q = deque([s]) while q: v = q.pop() visited[v] = 1 for e in self.graph[v]: if e.cap and not visited[e.to]: q.append(e.to) return visited n = II() mf = MaxFlow(2*n+2) for i in range(n): a, b = LI1() mf.add_edge(2*n, i, 1) mf.add_edge(i, a+n, 1) mf.add_edge(i, b+n, 1) mf.add_edge(i+n, 2*n+1, 1) mx = mf.flow(n*2, n*2+1) ans = [0]*n if mx == n: print("Yes") for u in range(n): for e in mf.graph[u]: if e.to < 2*n and e.cap==0: ans[u] = e.to-n+1 break print(*ans, sep="\n") else: print("No")