def solve(io)
  n, q = io.get2
  a = io.get_a(n)

  a2 = a.map_with_index { |ai, i| {ai, i} }
  a2.sort_by! { |ai, _| -ai }

  c = Array.new(n, -1)
  c2 = [] of Int32
  a2.each do |_, i|
    c[i] = c2.bsearch { |j| j < i } || -1
    c2.push(i)
    c2.sort! { |a, b| b <=> a }
  end

  b = Array.new(n, -1)
  aat = AATree(Int32).new
  a2.each do |_, i|
    b[i] = aat.rsearch { |j| j < i } || -1
    aat.insert(i)
  end

  b2 = b.map_with_index { |bi, i| {bi, i} }
  b2.sort_by! { |bi, _| bi }

  r = Array.new(q) do |i|
    ti, li, ri = io.get3; li -= 1; ri -= 1
    {li, ri, i}
  end
  r.sort_by! { |li, _, _| li }

  j = 0
  ft = FenwickTree(Int32).new(n)
  ans = Array.new(q, 0)
  r.each do |li, ri, i|
    while b2[j][0] < li
      ft.add(b2[j][1], 1)
      j += 1
    end
    ans[i] = ft[li..ri]
  end

  ans.each do |v|
    io.put v
  end
end

class ProconIO
  def initialize(@ins : IO = STDIN, @outs : IO = STDOUT)
    @buf = IO::Memory.new("")
  end

  def get(k : T.class = Int32) forall T
    get_v(k)
  end

  macro define_get
    {% for i in (2..9) %}
      def get({{ *(1..i).map { |j| "k#{j}".id } }})
        { {{ *(1..i).map { |j| "get(k#{j})".id } }} }
      end
    {% end %}
  end
  define_get

  macro define_getn
    {% for i in (2..9) %}
      def get{{i}}(k : T.class = Int32) forall T
        get({{ *(1..i).map { "k".id } }})
      end
    {% end %}
  end
  define_getn

  def get_a(n : Int, k : T.class = Int32) forall T
    Array.new(n) { get_v(k) }
  end

  def get_c(n : Int, k : T.class = Int32) forall T
    get_a(n, k)
  end

  macro define_get_c
    {% for i in (2..9) %}
      def get_c(n : Int, {{ *(1..i).map { |j| "k#{j}".id } }})
        a = Array.new(n) { get({{ *(1..i).map { |j| "k#{j}".id } }}) }
        { {{ *(1..i).map { |j| "a.map { |e| e[#{j-1}] }".id } }} }
      end
    {% end %}
  end
  define_get_c

  macro define_getn_c
    {% for i in (2..9) %}
      def get{{i}}_c(n : Int, k : T.class = Int32) forall T
        get_c(n, {{ *(1..i).map { "k".id } }})
      end
    {% end %}
  end
  define_getn_c

  def get_m(r : Int, c : Int, k : T.class = Int32) forall T
    Array.new(r) { get_a(c, k) }
  end

  macro define_put
    {% for i in (1..9) %}
      def put({{ *(1..i).map { |j| "v#{j}".id } }}, *, delimiter = " ")
        {% for j in (1..i) %}
          print_v(v{{j}}, delimiter)
          {% if j < i %}@outs << delimiter{% end %}
        {% end %}
        @outs.puts
      end
    {% end %}
  end
  define_put

  def put_e(*vs)
    put(*vs)
    exit
  end

  def put_f(*vs)
    put(*vs)
    @outs.flush
  end


  private def get_v(k : Int32.class); get_token.to_i32; end
  private def get_v(k : Int64.class); get_token.to_i64; end
  private def get_v(k : UInt32.class); get_token.to_u32; end
  private def get_v(k : UInt64.class); get_token.to_u64; end
  private def get_v(k : Float64.class); get_token.to_f64; end
  private def get_v(k : String.class); get_token; end

  private def get_token
    loop do
      token = @buf.gets(' ', chomp: true)
      break token unless token.nil?
      @buf = IO::Memory.new(@ins.read_line)
    end
  end

  private def print_v(v, dlimiter)
    @outs << v
  end

  private def print_v(v : Enumerable, delimiter)
    v.each_with_index do |e, i|
      @outs << e
      @outs << delimiter if i < v.size - 1
    end
  end
end

struct Int
  def cdiv(b : Int)
    (self + b - 1) // b
  end

  def bit?(i : Int)
    bit(i) == 1
  end

  def set_bit(i : Int)
    self | (self.class.new(1) << i)
  end

  def reset_bit(i : Int)
    self & ~(self.class.new(1) << i)
  end

  
  {% if compare_versions(env("CRYSTAL_VERSION") || "0.0.0", "0.35.0") < 0 %}
    def digits(base = 10)
      raise ArgumentError.new("Invalid base #{base}") if base < 2
      raise ArgumentError.new("Can't request digits of negative number") if self < 0
      return [0] if self == 0

      num = self
      digits_count = (Math.log(self.to_f + 1) / Math.log(base)).ceil.to_i
      ary = Array(Int32).new(digits_count)
      while num != 0
        ary << num.remainder(base).to_i
        num = num.tdiv(base)
      end
      ary
    end
  {% end %}

  {% if compare_versions(env("CRYSTAL_VERSION") || "0.0.0", "0.34.0") < 0 %}
    def bit_length : Int32
      x = self < 0 ? ~self : self

      if x.is_a?(Int::Primitive)
        Int32.new(sizeof(self) * 8 - x.leading_zeros_count)
      else
        to_s(2).size
      end
    end
  {% end %}
end

struct Float64
  def near?(x)
    (self - x).abs <= (self.abs < x.abs ? x.abs : self.abs) * EPSILON
  end
end

struct Number
  {% if compare_versions(env("CRYSTAL_VERSION") || "0.0.0", "1.1.0") < 0 %}
    def zero?
      self == 0
    end

    def positive?
      self > 0
    end

    def negative?
      self < 0
    end
  {% end %}

  {% if compare_versions(env("CRYSTAL_VERSION") || "0.0.0", "0.36.0") < 0 %}
    def self.additive_identity
      zero
    end

    def self.multiplicative_identity
      new(1)
    end
  {% end %}
end

class Array
  macro new_md(*args, &block)
    {% if !block %}
      {% for arg, i in args[0...-2] %}
        Array.new({{arg}}) {
      {% end %}
      Array.new({{args[-2]}}, {{args[-1]}})
      {% for arg in args[0...-2] %}
        }
      {% end %}
    {% else %}
      {% for arg, i in args %}
        Array.new({{arg}}) { |_i{{i}}|
      {% end %}
      {% for block_arg, i in block.args %}
        {{block_arg}} = _i{{i}}
      {% end %}
      {{block.body}}
      {% for arg in args %}
        }
      {% end %}
    {% end %}
  end
end

module Math
  {% if compare_versions(env("CRYSTAL_VERSION") || "0.0.0", "1.2.0") < 0 %}
    def isqrt(value : Int::Primitive)
      raise ArgumentError.new "Input must be non-negative integer" if value < 0
      return value if value < 2
      res = value.class.zero
      bit = res.succ << (res.leading_zeros_count - 2)
      bit >>= value.leading_zeros_count & ~0x3
      while (bit != 0)
        if value >= res + bit
          value -= res + bit
          res = (res >> 1) + bit
        else
          res >>= 1
        end
        bit >>= 2
      end
      res
    end
  {% end %}
end

macro min_u(a, b)
  {{a}} = Math.min({{a}}, {{b}})
end

macro max_u(a, b)
  {{a}} = Math.max({{a}}, {{b}})
end

macro zip(a, *b, &block)
  {{a}}.zip({{*b}}) {{block}}
end

class FenwickTree(T)
  def initialize(@n : Int32)
    @b = Array.new(@n + 1, T.additive_identity)
  end

  def [](i : Int)
    self[i..i]
  end

  def [](start : Int, count : Int)
    get(start + count) - get(start)
  end

  def [](r : Range)
    sc = Indexable.range_to_index_and_count(r, @n)
    raise ArgumentError.new("Invalid range") if sc.nil?
    self[*sc]
  end

  def add(i : Int, val : T)
    i += 1
    while i <= @n
      @b[i] += val
      i += i & -i
    end
  end


  @b : Array(T)

  private def get(i : Int)
    s = T.additive_identity
    while i > 0
      s += @b[i]
      i -= i & -i
    end
    s
  end
end

class AATree(T)
  def initialize
    @root = NilNode(T).instance
    @cmp = ->(a : T, b : T) { a <=> b }
  end

  @root : Node(T)
  @cmp : (T, T) -> Int32

  def debug
    @root.debug(@root.height)
  end

  def search(&block : T -> Bool)
    node = search_node(@root, block)
    node.nil_node? ? nil : node.key
  end

  def rsearch(&block : T -> Bool)
    node = rsearch_node(@root, block)
    node.nil_node? ? nil : node.key
  end

  def insert(key : T)
    @root = insert(@root, key)
  end

  def delete(key : T)
    @root = delete(@root, key)
  end

  def min_node(node : Node(T))
    until node.left.nil_node?
      node = node.left
    end
    node
  end

  def max_node(node : Node(T))
    until node.right.nil_node?
      node = node.right
    end
    node
  end

  def search_node(node : Node(T), block : T -> Bool)
    last : Node(T) = NilNode(T).instance
    loop do
      if block.call(node.key)
        last = node
        if node.left.nil_node?
          break last
        else
          node = node.left
        end
      else
        if node.right.nil_node?
          break last
        else
          node = node.right
        end
      end
    end
  end

  def rsearch_node(node : Node(T), block : T -> Bool)
    last : Node(T) = NilNode(T).instance
    loop do
      if block.call(node.key)
        last = node
        if node.right.nil_node?
          break last
        else
          node = node.right
        end
      else
        if node.left.nil_node?
          break last
        else
          node = node.left
        end
      end
    end
  end

  def insert(node : Node(T), key : T)
    if node.nil_node?
      return Node.new(key)
    elsif @cmp.call(key, node.key).negative?
      node.left = insert(node.left, key)
    else
      node.right = insert(node.right, key)
    end
    split(skew(node))
  end

  def delete(node : Node(T), key : T)
    unless node.nil_node?
      if @cmp.call(key, node.key).zero?
        if node.left.nil_node?
          return node.right
        elsif node.right.nil_node?
          return node.left
        else
          node.key = min_node(node.right).key
          node.right = delete(node.right, node.key)
        end
      elsif @cmp.call(key, node.key).negative?
        node.left = delete(node.left, key)
      else
        node.right = delete(node.right, key)
      end
      if node.left.height < node.height - 1 || node.right.height < node.height - 1
        node.height -= 1
        if node.right.height > node.height
          node.right.height = node.height
        end
        node = skew(node)
        node.right = skew(node.right)
        node.right.right = skew(node.right.right)
        node = split(node)
        node.right = split(node.right)
      end
    end
    node
  end

  def skew(node : Node(T))
    if node.left.height == node.height
      node = rotate_right(node)
    end
    node
  end

  def split(node : Node(T))
    if node.height == node.right.right.height
      node = rotate_left(node)
      node.height += 1
    end
    node
  end

  def rotate_right(node : Node(T))
    lnode = node.left
    node.left = lnode.right
    lnode.right = node
    lnode
  end

  def rotate_left(node : Node(T))
    rnode = node.right
    node.right = rnode.left
    rnode.left = node
    rnode
  end

  class Node(T)
    def initialize(@key : T)
      @height = 1
      @left = NilNode(T).instance
      @right = NilNode(T).instance
    end

    property key : T
    property height : Int32
    property left : Node(T)
    property right : Node(T)

    def debug(max_height)
      unless nil_node?
        left.debug(max_height)
        puts "    " * (max_height - height) + key.to_s
        right.debug(max_height)
      end
    end

    def nil_node?
      false
    end
  end

  class NilNode(T) < Node(T)
    def self.instance
      node = new
      node.left = node
      node.right = node
      node
    end

    def initialize
      @key = uninitialized T
      @height = 0
      @left = uninitialized Node(T)
      @right = uninitialized Node(T)
    end

    def debug
    end

    def nil_node?
      true
    end
  end
end

solve(ProconIO.new)