//#include #include using namespace std; using lint = long long; constexpr lint mod = 1e9 + 7; #define all(x) (x).begin(), (x).end() #define bitcount(n) __builtin_popcountll((lint)(n)) #define fcout cout << fixed << setprecision(15) #define highest(x) (63 - __builtin_clzll(x)) #define rep(i, n) for(int i = 0; i < int(n); i++) #define rep2(i, l, r) for(int i = int(l); i < int(r); i++) #define repr(i, n) for(int i = int(n) - 1; i >= 0; i--) #define repr2(i, l, r) for(int i = int(r) - 1; i >= int(l); i--) #define mp(x, y) make_pair(x, y) constexpr int inf9 = 1e9; constexpr lint inf18 = 1e18; inline void Yes(bool condition){ if(condition) cout << "Yes" << endl; else cout << "No" << endl; } lint power(lint base, lint exponent, lint module){ if(exponent % 2){ return power(base, exponent - 1, module) * base % module; }else if(exponent){ lint root_ans = power(base, exponent / 2, module); return root_ans * root_ans % module; }else{ return 1; }} struct position{ int x, y; }; position mv[4] = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}}; double euclidean(position first, position second){ return sqrt((second.x - first.x) * (second.x - first.x) + (second.y - first.y) * (second.y - first.y)); } template void array_output(itr start, itr goal){ for(auto i = start; i != goal; i++) cout << (i == start ? "" : " ") << (*i); cout << endl; } template void cins(itr first, itr last){ for(auto i = first; i != last; i++){ cin >> (*i); } } template T gcd(T a, T b){ if(b) return gcd(b, a % b); else return a; } template T lcm(T a, T b){ return a / gcd(a, b) * b; } struct combination{ vector fact, inv; combination(int sz) : fact(sz + 1), inv(sz + 1){ fact[0] = 1; for(int i = 1; i <= sz; i++){ fact[i] = fact[i - 1] * i % mod; } inv[sz] = power(fact[sz], mod - 2, mod); for(int i = sz - 1; i >= 0; i--){ inv[i] = inv[i + 1] * (i + 1) % mod; } } lint P(int n, int r){ if(r < 0 || n < r) return 0; return (fact[n] * inv[n - r] % mod); } lint C(int p, int q){ if(q < 0 || p < q) return 0; return (fact[p] * inv[q] % mod * inv[p - q] % mod); } }; template bool next_sequence(itr first, itr last, int max_bound){ itr now = last; while(now != first){ now--; (*now)++; if((*now) == max_bound){ (*now) = 0; }else{ return true; } } return false; } template bool next_sequence2(itr first, itr last, itr2 first2, itr2 last2){ itr now = last; itr2 now2 = last2; while(now != first){ now--, now2--; (*now)++; if((*now) == (*now2)){ (*now) = 0; }else{ return true; } } return false; } template bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } return 0; } template bool chmin(T &a, const T &b){ if(b < a){ a = b; return 1; } return 0; } inline int at(lint i, int j){ return (i >> j) & 1; } random_device rnd; bool is_in_board(lint y, lint x, lint H, lint W){ return (0 <= y && y < H && 0 <= x && x < W); } lint inv2 = power(2, mod - 2, mod); struct io_init { io_init() { cin.tie(nullptr); cout.tie(nullptr); std::ios::sync_with_stdio(false); } } io_init; template struct LazySegmentTree{ using F = function; using G = function; using H = function; using P = function; int sz; vector data; vector lazy; vector is_lazy; F f; G g; H h; P p; T id; LazySegmentTree() { } LazySegmentTree(int n, F f, G g, H h, P p, T id): f(f), g(g), h(h), p(p), id(id) { sz = 1; while(sz < n) sz *= 2; data.resize(sz * 2, id); lazy.resize(sz * 2); is_lazy.resize(sz * 2, false); } void set(int k, T x){ data[k + sz] = x; } void build(){ repr2(i, 1, sz){ data[i] = f(data[i * 2], data[i * 2 + 1]); } } void eval(int l, int r, int at){ if(is_lazy[at]){ data[at] = g(data[at], p(lazy[at], r - l)); if(r - l > 1){ lazy[at * 2] = (is_lazy[at * 2] ? h(lazy[at * 2], lazy[at]) : lazy[at]); lazy[at * 2 + 1] = (is_lazy[at * 2 + 1] ? h(lazy[at * 2 + 1], lazy[at]) : lazy[at]); is_lazy[at * 2] = is_lazy[at * 2 + 1] = true; } is_lazy[at] = false; } } void update(int a, int b, Op x, int l, int r, int at){ eval(l, r, at); if(r <= a || b <= l){ return; }else if(a <= l && r <= b){ lazy[at] = (is_lazy[at] ? h(lazy[at], x) : x); is_lazy[at] = true; eval(l, r, at); return; } update(a, b, x, l, (l + r) / 2, at * 2); update(a, b, x, (l + r) / 2, r, at * 2 + 1); data[at] = f(data[at * 2], data[at * 2 + 1]); } void update(int a, int b, Op x){ update(a, b, x, 0, sz, 1); } T query(int a, int b, int l, int r, int at){ eval(l, r, at); if(r <= a || b <= l){ return id; }else if(a <= l && r <= b){ return data[at]; } return f(query(a, b, l, (l + r) / 2, at * 2), query(a, b, (l + r) / 2, r, at * 2 + 1)); } T query(int a, int b){ return query(a, b, 0, sz, 1); } }; template struct SegmentTree{ using F = function; int sz; vector data; F f; T id; SegmentTree(): sz(1), f([](T a, T b){ return a + b; }), data(2, id) {} SegmentTree(int n, F f, T id): f(f), id(id) { sz = 1; while(sz < n) sz *= 2; data.resize(sz * 2, id); } void update(int k, T x){ k += sz; data[k] = x; while(k > 1){ k /= 2; data[k] = f(data[k * 2], data[k * 2 + 1]); } } T query(int a, int b, int l, int r, int at){ if(a <= l && r <= b){ return data[at]; }else if(r <= a || b <= l){ return id; } return f(query(a, b, l, (l + r) / 2, at * 2), query(a, b, (l + r) / 2, r, at * 2 + 1)); } T query(int a, int b){ return query(a, b, 0, sz, 1); } T operator [](int k){ return data[k + sz]; } }; template struct LazyHLDCommutative{ using F = function; using G = function; using H = function; using P = function; F f; G g; H h; P p; T id; int sz; LazySegmentTree seg; vector> graph; vector> child; vector size, depth, par; vector in, head; vector tour, tour_id; SegmentTree rmq; LazyHLDCommutative(int n, F f, G g, H h, P p, T id): sz(n), f(f), g(g), h(h), p(p), id(id), graph(n), child(n), size(n), depth(n), par(n), in(n), head(n), tour_id(n) { seg = LazySegmentTree(n, f, g, h, p, id); } void add_edge(int a, int b){ graph[a].push_back(b); graph[b].push_back(a); } void dfs_sz(int at, int back){ size[at] = 1; par[at] = back; for(int to: graph[at]){ if(to == back) continue; depth[to] = depth[at] + 1; dfs_sz(to, at); child[at].push_back(to); size[at] += size[to]; } } void dfs_hl(int at, int par, int &num){ in[at] = num; num++; if(child[at].empty()) return; for(int &c: child[at]){ if(size[c] > size[child[at][0]]){ swap(c, child[at][0]); } } int heavy = child[at][0]; for(int c: child[at]){ if(c == heavy){ head[c] = head[at]; }else{ head[c] = c; } dfs_hl(c, at, num); } } void dfs_lca(int at, int back){ tour_id[at] = int(tour.size()); tour.push_back(at); for(int to: graph[at]){ if(to == back) continue; dfs_lca(to, at); tour.push_back(at); } } void build(){ depth.resize(sz); depth[0] = 0; dfs_sz(0, -1); head[0] = 0; int tmp = 0; dfs_hl(0, -1, tmp); tour.clear(); dfs_lca(0, -1); depth.push_back(INT_MAX); auto f = [&](int a, int b){ if(depth[a] < depth[b]) return a; else return b; }; rmq = SegmentTree(int(tour.size()), f, sz); rep(i, tour.size()){ rmq.update(i, tour[i]); } } // s -> t, [s, t) T query_up(int s, int t){ T ans = id; while(depth[head[s]] > depth[t]){ int top = head[s]; ans = f(ans, seg.query(in[top], in[s] + 1)); s = par[top]; } ans = f(ans, seg.query(in[t] + 1, in[s] + 1)); return ans; } // s -> t, (s, t] T query_down(int s, int t){ return query_up(t, s); } int lca(int a, int b){ if(tour_id[a] > tour_id[b]) swap(a, b); return rmq.query(tour_id[a], tour_id[b] + 1); } // s -> t, [s, t] T query(int s, int t){ int l = lca(s, t); return f(f(query_up(s, l), seg.query(in[l], in[l] + 1)), query_down(l, t)); } // s -> t, [s, t) void update_up(int s, int t, T x){ if(s == t) return; while(depth[head[s]] > depth[t]){ int top = head[s]; seg.update(in[top], in[s] + 1, x); s = par[top]; } seg.update(in[t] + 1, in[s] + 1, x); } // [s, t] void update(int s, int t, T x){ int l = lca(s, t); update_up(s, l, x); seg.update(in[l], in[l] + 1, x); update_up(t, l, x); } }; int main(){ int n; cin >> n; auto f = [](lint a, lint b){ return a + b; }; auto p = [](lint a, int len){ return a; }; LazyHLDCommutative graph(n, f, f, f, p, 0); rep(i, n - 1){ int a, b; cin >> a >> b; a--, b--; graph.add_edge(a, b); } graph.build(); rep(i, n){ graph.update(i, i, 1); } int q; cin >> q; lint ans = 0; rep(_, q){ int a, b; cin >> a >> b; a--, b--; ans += graph.query(a, b); graph.update(a, b, 1); } cout << ans << endl; }