#define MOD_TYPE 2 #pragma region Macros #include using namespace std; #include using namespace atcoder; #if 0 #include #include using Int = boost::multiprecision::cpp_int; using lld = boost::multiprecision::cpp_dec_float_100; #endif #if 1 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif using ll = long long int; using ld = long double; using pii = pair; using pll = pair; using pld = pair; template using smaller_queue = priority_queue, greater>; #if MOD_TYPE == 1 constexpr ll MOD = ll(1e9 + 7); #else #if MOD_TYPE == 2 constexpr ll MOD = 998244353; #else constexpr ll MOD = 0; #endif #endif using mint = static_modint; constexpr int INF = (int)1e9 + 10; constexpr ll LINF = (ll)4e18; constexpr double PI = acos(-1.0); constexpr double EPS = 1e-11; constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0}; constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0}; #define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i) #define rep(i, n) REP(i, 0, n) #define REPI(i, m, n) for (int i = m; i < (int)(n); ++i) #define repi(i, n) REPI(i, 0, n) #define MP make_pair #define MT make_tuple #define YES(n) cout << ((n) ? "YES" : "NO") << "\n" #define Yes(n) cout << ((n) ? "Yes" : "No") << "\n" #define possible(n) cout << ((n) ? "possible" : "impossible") << "\n" #define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n" #define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n" #define all(v) v.begin(), v.end() #define NP(v) next_permutation(all(v)) #define dbg(x) cerr << #x << ":" << x << "\n"; struct io_init { io_init() { cin.tie(0); ios::sync_with_stdio(false); cout << setprecision(30) << setiosflags(ios::fixed); }; } io_init; template inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; } template inline void Fill(A (&array)[N], const T &val) { fill((T *)array, (T *)(array + N), val); } template vector compress(vector &v) { vector val = v; sort(all(val)), val.erase(unique(all(val)), val.end()); for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin(); return val; } template constexpr istream &operator>>(istream &is, pair &p) noexcept { is >> p.first >> p.second; return is; } template constexpr ostream &operator<<(ostream &os, pair p) noexcept { os << p.first << " " << p.second; return os; } ostream &operator<<(ostream &os, mint m) { os << m.val(); return os; } random_device seed_gen; mt19937_64 engine(seed_gen()); struct BiCoef { vector fact_, inv_, finv_; BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) { fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1); for (int i = 2; i < n; i++) { fact_[i] = fact_[i - 1] * i; inv_[i] = -inv_[MOD % i] * (MOD / i); finv_[i] = finv_[i - 1] * inv_[i]; } } mint C(ll n, ll k) const noexcept { if (n < k || n < 0 || k < 0) return 0; return fact_[n] * finv_[k] * finv_[n - k]; } mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; } mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); } mint Ch1(ll n, ll k) const noexcept { if (n < 0 || k < 0) return 0; mint res = 0; for (int i = 0; i < n; i++) res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1); return res; } mint fact(ll n) const noexcept { if (n < 0) return 0; return fact_[n]; } mint inv(ll n) const noexcept { if (n < 0) return 0; return inv_[n]; } mint finv(ll n) const noexcept { if (n < 0) return 0; return finv_[n]; } }; BiCoef bc(2000010); #pragma endregion const int MAX_N = 1e6; ll can_div[MAX_N] = {}; void init_prime() { can_div[1] = -1; for (ll i = 2; i < MAX_N; i++) { if (can_div[i] != 0) continue; for (ll j = i + i; j < MAX_N; j += i) can_div[j] = i; } } struct init_prime_ { init_prime_() { init_prime(); }; } init_prime_; inline bool is_prime(ll n) { if (n <= 1) return false; return !can_div[n]; } void factorization(int n, unordered_map &res) { if (n <= 1) return; if (!can_div[n]) { ++res[n]; return; } ++res[can_div[n]]; factorization(n / can_div[n], res); } int common(int n, int m) { unordered_map A, B; factorization(n, A); factorization(m, B); int sum = 0; for (auto [p, e] : A) { sum += min(e, B[p]); } return sum; } int divisor(int n) { unordered_map mp; factorization(n, mp); int cnt = 1; for (auto [p, e] : mp) cnt *= e + 1; return cnt; } void solve() { int n, k; cin >> n >> k; pii p{INF, -1}; for (int i = 1; i < n; i++) { if (common(n, i) >= k) { chmin(p, pii{-divisor(i), i}); } } cout << p.second << "\n"; } int main() { solve(); }