#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using lint = long long; using pint = pair; using plint = pair; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template void ndarray(vector& vec, const V& val, int len) { vec.assign(len, val); } template void ndarray(vector& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template pair operator+(const pair &l, const pair &r) { return make_pair(l.first + r.first, l.second + r.second); } template pair operator-(const pair &l, const pair &r) { return make_pair(l.first - r.first, l.second - r.second); } template vector sort_unique(vector vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template int arglb(const std::vector &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template int argub(const std::vector &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template istream &operator>>(istream &is, vector &vec) { for (auto &v : vec) is >> v; return is; } template ostream &operator<<(ostream &os, const vector &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template ostream &operator<<(ostream &os, const array &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } #if __cplusplus >= 201703L template istream &operator>>(istream &is, tuple &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template ostream &operator<<(ostream &os, const tuple &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } #endif template ostream &operator<<(ostream &os, const deque &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template ostream &operator<<(ostream &os, const set &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template ostream &operator<<(ostream &os, const unordered_set &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template ostream &operator<<(ostream &os, const multiset &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template ostream &operator<<(ostream &os, const unordered_multiset &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template ostream &operator<<(ostream &os, const pair &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; } template ostream &operator<<(ostream &os, const map &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template ostream &operator<<(ostream &os, const unordered_map &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl #define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr) #else #define dbg(x) (x) #define dbgif(cond, x) 0 #endif // Shortest cycle detection of UNDIRECTED SIMPLE graphs based on 01-BFS // Assumption: only two types of edges are permitted: weight = 0 or W ( > 0) // Complexity: O(E) // Verified: struct ShortestCycle01 { const int INF = std::numeric_limits::max() / 2; int V, E; int INVALID = -1; std::vector>> to; // (nxt, weight) ShortestCycle01() = default; ShortestCycle01(int V) : V(V), E(0), to(V) {} void add_edge(int s, int t, int len) { assert(0 <= s and s < V); assert(0 <= t and t < V); assert(len >= 0); to[s].emplace_back(t, len); to[t].emplace_back(s, len); E++; } std::vector dist; std::vector prev; // Find minimum length simple cycle which passes vertex `v` // - return: (LEN, (a, b)) // - LEN: length of the shortest cycles if exists, INF otherwise. // - the cycle consists of vertices [v, ..., prev[prev[a]], prev[a], a, b, prev[b], prev[prev[b]], ..., v] std::pair> Solve(int v) { assert(0 <= v and v < V); dist.assign(V, INF); dist[v] = 0; prev.assign(V, -1); std::deque> bfsq; std::vector, int>> add_edge; bfsq.emplace_back(v, -1); while (!bfsq.empty()) { int now = bfsq.front().first, prv = bfsq.front().second; bfsq.pop_front(); for (auto nxt : to[now]) if (nxt.first != prv) { if (dist[nxt.first] == INF) { dist[nxt.first] = dist[now] + nxt.second; prev[nxt.first] = now; if (nxt.second) bfsq.emplace_back(nxt.first, now); else bfsq.emplace_front(nxt.first, now); } else add_edge.emplace_back(std::make_pair(now, nxt.first), nxt.second); } } int minimum_cycle = INF; int s = -1, t = -1; for (auto edge : add_edge) { int a = edge.first.first, b = edge.first.second; int L = dist[a] + dist[b] + edge.second; if (L < minimum_cycle) minimum_cycle = L, s = a, t = b; } return std::make_pair(minimum_cycle, std::make_pair(s, t)); } }; // UnionFind Tree (0-indexed), based on size of each disjoint set struct UnionFind { std::vector par, cou; UnionFind(int N = 0) : par(N), cou(N, 1) { iota(par.begin(), par.end(), 0); } int find(int x) { return (par[x] == x) ? x : (par[x] = find(par[x])); } bool unite(int x, int y) { x = find(x), y = find(y); if (x == y) return false; if (cou[x] < cou[y]) std::swap(x, y); par[y] = x, cou[x] += cou[y]; return true; } int count(int x) { return cou[find(x)]; } bool same(int x, int y) { return find(x) == find(y); } }; int main() { int H, W, N; cin >> H >> W >> N; const int X = 100001; ShortestCycle01 graph(X * 2); UnionFind uf(X * 2); int xi = -1; map mp; REP(i, N) { int x, y; cin >> x >> y; graph.add_edge(x, y + X, 1); if (!uf.unite(x, y + X)) { xi = x; } mp[pint(x, y + X)] = i + 1; } if (xi < 0) { puts("-1"); return 0; } auto [len, p] = graph.Solve(xi); auto [a, b] = p; vector q; int h = a; while (h != xi) { q.push_back(h); h = graph.prev[h]; } q.push_back(h); reverse(ALL(q)); h = b; while (h != xi) { q.push_back(h); h = graph.prev[h]; } cout << q.size() << '\n'; REP(i, q.size()) { int a = q[i], b = q[(i + 1) % q.size()]; if (a > b) swap(a, b); cout << mp[pint(a, b)] << ' '; } cout << '\n'; }