#define _USE_MATH_DEFINES #include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; std::vector prime_sieve(int n, bool get_only_prime) { std::vector prime, smallest_prime_factor(n + 1); std::iota(smallest_prime_factor.begin(), smallest_prime_factor.end(), 0); for (int i = 2; i <= n; ++i) { if (smallest_prime_factor[i] == i) prime.emplace_back(i); for (int p : prime) { if (i * p > n || p > smallest_prime_factor[i]) break; smallest_prime_factor[i * p] = p; } } return get_only_prime ? prime : smallest_prime_factor; } int main() { constexpr int M = 1000000; ll l, r; cin >> l >> r; vector is_squarefree(r - l + 1, true); vector tmp(r - l + 1); iota(ALL(tmp), l); for (int p : prime_sieve(M, true)) { assert(p >= 1); for (ll i = (l + p - 1) / p * p; i <= r; i += p) { const int idx = i - l; if (!is_squarefree[idx] || tmp[idx] % p > 0) continue; tmp[idx] /= p; if (tmp[idx] % p == 0) is_squarefree[idx] = false; } } int ans = 0; REP(i, r - l + 1) { if (!is_squarefree[i]) continue; if (tmp[i] == 1) { ++ans; } else { ll sq = llround(sqrt(tmp[i])); ans += sq * sq != tmp[i]; } } cout << ans << '\n'; return 0; }