# ACL-for-python by shakayami # https://github.com/shakayami/ACL-for-python class string: def z_algorithm(s): n = len(s) if n == 0: return [] z = [0]*n i = 1 j = 0 while(i < n): z[i] = 0 if (j+z[j] <= i) else min(j+z[j]-i, z[i-j]) while((i+z[i] < n) and (s[z[i]] == s[i+z[i]])): z[i] += 1 if (j+z[j] < i+z[i]): j = i i += 1 z[0] = n return z class lazy_segtree(): def update(self, k): self.d[k] = self.op(self.d[2*k], self.d[2*k+1]) def all_apply(self, k, f): self.d[k] = self.mapping(f, self.d[k]) if (k < self.size): self.lz[k] = self.composition(f, self.lz[k]) def push(self, k): self.all_apply(2*k, self.lz[k]) self.all_apply(2*k+1, self.lz[k]) self.lz[k] = self.identity def __init__(self, V, OP, E, MAPPING, COMPOSITION, ID): self.n = len(V) self.log = (self.n-1).bit_length() self.size = 1 << self.log self.d = [E for i in range(2*self.size)] self.lz = [ID for i in range(self.size)] self.e = E self.op = OP self.mapping = MAPPING self.composition = COMPOSITION self.identity = ID for i in range(self.n): self.d[self.size+i] = V[i] for i in range(self.size-1, 0, -1): self.update(i) def set(self, p, x): assert 0 <= p and p < self.n p += self.size for i in range(self.log, 0, -1): self.push(p >> i) self.d[p] = x for i in range(1, self.log+1): self.update(p >> i) def get(self, p): assert 0 <= p and p < self.n p += self.size for i in range(self.log, 0, -1): self.push(p >> i) return self.d[p] def prod(self, l, r): assert 0 <= l and l <= r and r <= self.n if l == r: return self.e l += self.size r += self.size for i in range(self.log, 0, -1): if (((l >> i) << i) != l): self.push(l >> i) if (((r >> i) << i) != r): self.push(r >> i) sml, smr = self.e, self.e while(l < r): if l & 1: sml = self.op(sml, self.d[l]) l += 1 if r & 1: r -= 1 smr = self.op(self.d[r], smr) l >>= 1 r >>= 1 return self.op(sml, smr) def all_prod(self): return self.d[1] def apply_point(self, p, f): assert 0 <= p and p < self.n p += self.size for i in range(self.log, 0, -1): self.push(p >> i) self.d[p] = self.mapping(f, self.d[p]) for i in range(1, self.log+1): self.update(p >> i) def apply(self, l, r, f): assert 0 <= l and l <= r and r <= self.n if l == r: return l += self.size r += self.size for i in range(self.log, 0, -1): if (((l >> i) << i) != l): self.push(l >> i) if (((r >> i) << i) != r): self.push((r-1) >> i) l2, r2 = l, r while(l < r): if (l & 1): self.all_apply(l, f) l += 1 if (r & 1): r -= 1 self.all_apply(r, f) l >>= 1 r >>= 1 l, r = l2, r2 for i in range(1, self.log+1): if (((l >> i) << i) != l): self.update(l >> i) if (((r >> i) << i) != r): self.update((r-1) >> i) def max_right(self, l, g): assert 0 <= l and l <= self.n assert g(self.e) if l == self.n: return self.n l += self.size for i in range(self.log, 0, -1): self.push(l >> i) sm = self.e while(1): while(i % 2 == 0): l >>= 1 if not(g(self.op(sm, self.d[l]))): while(l < self.size): self.push(l) l = (2*l) if (g(self.op(sm, self.d[l]))): sm = self.op(sm, self.d[l]) l += 1 return l-self.size sm = self.op(sm, self.d[l]) l += 1 if (l & -l) == l: break return self.n def min_left(self, r, g): assert (0 <= r and r <= self.n) assert g(self.e) if r == 0: return 0 r += self.size for i in range(self.log, 0, -1): self.push((r-1) >> i) sm = self.e while(1): r -= 1 while(r > 1 and (r % 2)): r >>= 1 if not(g(self.op(self.d[r], sm))): while(r < self.size): self.push(r) r = (2*r+1) if g(self.op(self.d[r], sm)): sm = self.op(self.d[r], sm) r -= 1 return r+1-self.size sm = self.op(self.d[r], sm) if (r & -r) == r: break return 0 class fenwick_tree(): n = 1 data = [0 for i in range(n)] def __init__(self, N): self.n = N self.data = [0 for i in range(N)] def add(self, p, x): assert 0 <= p < self.n, "0<=p 0): s += self.data[r-1] r -= r & -r return s def lower_bound(self, w): if w < 0: return -1 k = 1 while k < self.n: k <<= 1 x = 0 ww = w while k > 0: if x + k - 1 < self.n and self.data[x + k - 1] < ww: ww -= self.data[x + k - 1] x += k k >>= 1 return x s = input() n = len(s) z = string.z_algorithm(s) for i in range(n): z[i] = min(z[i], i) invz = [[] for i in range(n)] fw = fenwick_tree(n + 2) for i in range(n): if z[i] >= 2: invz[z[i]].append(i) fw.add(i, 1) fw.add(n + 1, 1) def op(a, b): return max(a, b) dp = lazy_segtree([0 for i in range(n + 1)], op, 0, op, op, 0) for j in range(2, n): cnt = dp.get(j) + j - 2 i = fw.lower_bound(1) + j while i < n + 1: dp.apply(i, n + 1, cnt) cnt += j - 1 i = fw.lower_bound(fw.sum0(i) + 1) + j for ii in invz[j]: fw.add(ii, -1) ans = n - dp.get(n) print(ans)