local mce, mfl, msq, mmi, mma, mab = math.ceil, math.floor, math.sqrt, math.min, math.max, math.abs local mod = 1000000007 local function bmul(x, y) local x1, y1 = mfl(x / 31623), mfl(y / 31623) local x0, y0 = x - x1 * 31623, y - y1 * 31623 return (x1 * y1 * 14122 + (x1 * y0 + x0 * y1) * 31623 + x0 * y0) % mod end local function badd(x, y) return (x + y) % mod end local function bsub(x, y) return x < y and x - y + mod or x - y end local function modpow(src, pow) local res = 1 while 0 < pow do if pow % 2 == 1 then res = bmul(res, src) pow = pow - 1 end src = bmul(src, src) pow = mfl(pow / 2) end return res end local function modinv(src) return modpow(src, mod - 2) end local function getComb(n, k) local ret = 1 local inv = 1 for i = 1, k do ret = bmul(ret, (n + 1 - i) % mod) inv = bmul(inv, i) end return bmul(ret, modinv(inv)) end local function getprimes(x) local primes = {} local allnums = {} for i = 1, x do allnums[i] = true end for i = 2, x do if allnums[i] then table.insert(primes, i) local lim = mfl(x / i) for j = 2, lim do allnums[j * i] = false end end end return primes end local function getdivisorparts(x, primes) local prime_num = #primes local tmp = {} local lim = mce(msq(x)) local primepos = 1 local dv = primes[primepos] while primepos <= prime_num and dv <= lim do if x % dv == 0 then local cnt = 1 x = mfl(x / dv) while x % dv == 0 do x = mfl(x / dv) cnt = cnt + 1 end table.insert(tmp, cnt) lim = mce(msq(x)) end if primepos == prime_num then break end primepos = primepos + 1 dv = primes[primepos] end if x ~= 1 then table.insert(tmp, 1) end return tmp end local primes = getprimes(2000000) local n, k = io.read("*n", "*n") local cnts = getdivisorparts(n, primes) local ret = 1 for i = 1, #cnts do local cnt = cnts[i] local v = 1 for j = 1, cnt do v = badd(v, getComb(j + k - 1, j)) end ret = bmul(ret, v) end print(ret)