// ---------- begin SCC ---------- pub struct SCC { size: usize, edge: Vec<(u32, u32)>, } impl SCC { pub fn new(size: usize) -> Self { assert!(size <= 10usize.pow(8)); SCC { size, edge: vec![] } } pub fn add_edge(&mut self, a: usize, b: usize) { assert!(a < self.size && b < self.size); self.edge.push((a as u32, b as u32)); } pub fn build(&self) -> (usize, Vec) { let size = self.size; let mut start = vec![0u32; size + 1]; self.edge.iter().for_each(|e| start[e.0 as usize + 1] += 1); for i in 1..=size { start[i] += start[i - 1]; } let mut buf = vec![0u32; self.edge.len()]; for &(a, b) in self.edge.iter() { let po = &mut start[a as usize]; buf[*po as usize] = b; *po += 1; } let mut s = 0usize; let neighbor = start[..size].iter().map(|t| { let t = *t as usize; let it = buf[s..t].iter().map(|p| *p as usize); s = t; it }).collect::>(); struct Graph { neighbor: Vec, ord: Vec, assigned: Vec, stack_s: Vec, stack_p: Vec, cnt: usize, id: usize, res: Vec, } impl> Graph { fn dfs(&mut self, v: usize) { self.ord[v] = self.cnt; self.cnt += 1; self.stack_s.push(v); self.stack_p.push(v); while let Some(u) = self.neighbor[v].next() { if self.ord[u] == !0 { self.dfs(u); } else if !self.assigned[u] { while self.ord[*self.stack_p.last().unwrap()] > self.ord[u] { self.stack_p.pop(); } } } if *self.stack_p.last().unwrap() == v { while let Some(u) = self.stack_s.pop() { self.res[u] = self.id; self.assigned[u] = true; if u == v { break; } } self.stack_p.pop(); self.id += 1; } } } let mut g = Graph { neighbor: neighbor, ord: vec![!0; size], assigned: vec![false; size], stack_s: vec![], stack_p: vec![], id: 0, cnt: 0, res: vec![0; size], }; for i in 0..size { if g.ord[i] == !0 { g.dfs(i); } } let Graph { mut res, id, .. } = g; res.iter_mut().for_each(|v| *v = id - 1 - *v); (id, res) } } // ---------- end SCC ---------- // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- use std::io::Write; use std::collections::*; type Map = BTreeMap; type Set = BTreeSet; type Deque = VecDeque; fn run() { input! { h: usize, w: usize, n: usize, c: [[usize; w]; h], } let pos = |x: usize, y: usize| -> usize { assert!(x < h && y < w); x * w + y }; let mut edge = vec![]; for (i, c) in c.windows(2).enumerate() { for (j, (x, y)) in c[0].iter().zip(&c[1]).enumerate() { if *x >= *y { edge.push((pos(i, j), pos(i + 1, j))); } if *x <= *y { edge.push((pos(i + 1, j), pos(i, j))); } } } for (i, c) in c.iter().enumerate() { for (j, c) in c.windows(2).enumerate() { if c[0] >= c[1] { edge.push((pos(i, j), pos(i, j + 1))); } if c[0] <= c[1] { edge.push((pos(i, j + 1), pos(i, j))); } } } let mut scc = SCC::new(h * w); for &(a, b) in edge.iter() { scc.add_edge(a, b); } let (len, id) = scc.build(); let mut g = vec![vec![]; len]; for (a, b) in edge { let a = id[a]; let b = id[b]; if a < b { g[a].push(b); } } let mut dp = vec![1; len]; for (i, g) in g.iter().enumerate().rev() { dp[i] = g.iter().map(|p| dp[*p] + 1).max().unwrap_or(1); } println!("{}", *dp.iter().max().unwrap()); } fn main() { run(); }