#pragma GCC optimize("O3") #include using namespace std; using ll=long long; using P=pair; template using V=vector; #define fi first #define se second #define all(v) (v).begin(),(v).end() const ll inf=(1e18); const ll mod=998244353; //const ll mod=1000000007; const vector dy={-1,0,1,0},dx={0,-1,0,1}; ll GCD(ll a,ll b) {return b ? GCD(b,a%b):a;} ll LCM(ll c,ll d){return c/GCD(c,d)*d;} struct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout< bool chmax(T &a, const T &b) { if (a bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; } templatevoid debag(const vector &a){cerr<<"debag :";for(auto v:a)cerr<void print(const vector &a){for(auto v:a)cout<>=1ll; } return res; } mint inv()const{return pow(mod-2);} //拡張ユークリッドの互除法 /* mint inv()const{ int x,y; int g=extgcd(v,mod,x,y); assert(g==1); if(x<0)x+=mod; return mint(x); }*/ friend ostream& operator<<(ostream&os,const mint&val){ return os<(const mint&val)const{return v>val.v;} }; template struct Matrix{ vector> A; Matrix() {} Matrix(int n,int m):A(n,vector(m,0)) {} Matrix(int n):A(n,vector(n,0)) {} int height() const{return (A.size());} int width() const{return (A[0].size());} inline const vector &operator[](int k)const{return (A.at(k));} inline vector &operator[](int k){return (A.at(k));} //単位行列 static Matrix I(int n){ Matrix mat(n); for(int i=0;i> C(n,vector(m,0)); for(int i=0;i0){ if(k&1){ B*=(*this); } (*this)*=(*this); k>>=1ll; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B)const{return (Matrix(*this)+=B);} Matrix operator-(const Matrix &B)const{return (Matrix(*this)-=B);} Matrix operator*(const Matrix &B)const{return (Matrix(*this)*=B);} Matrix operator^(const long long k)const{return (Matrix(*this)^=k);} friend ostream &operator<<(ostream &os,Matrix &mat){ int n=mat.height(),m=mat.width(); for(int i=0;i>a>>b>>s>>c>>d>>t; ll k; cin>>k; int n=(s+t+1); Matrix mat(n,n),res(n,1); mint p=mint(a)/mint(b),q=mint(c)/mint(d); mat[0][0]=mint(1); mat[n-1][n-1]=mint(1); res[s][0]=mint(1); for(int i=0;i