class segment_tree_dual: def __init__(self, N, compose, funcval, ID_M=None): self.compose = compose self.ID_M = ID_M self.funcval = funcval self.height = (N-1).bit_length() #木の段数 self.N0 = 1<= N self.laz = [self.ID_M]*(2*self.N0) #作用素の木 self.val = None #値の配列 #初期値の配列を作る def build(self,initial): self.val = initial[:] #laz[k] を子に伝える、k が一番下の場合は laz[k] を val に反映する def propagate(self,k): if self.laz[k] == self.ID_M: return; if self.N0 <= k: self.val[k-self.N0] = self.funcval(self.val[k-self.N0], self.laz[k]) self.laz[k] = self.ID_M else: self.laz[(k<<1) ] = self.compose(self.laz[(k<<1) ],self.laz[k]); self.laz[(k<<1)+1] = self.compose(self.laz[(k<<1)+1],self.laz[k]); self.laz[k] = self.ID_M; # 遅延をすべて解消する def propagate_all(self): upto = self.N0 + len(self.val) for i in range(1,upto): self.propagate(i) # laz[k]およびその上に位置する作用素をすべて伝播 def thrust(self,k): for i in range(self.height,-1,-1): self.propagate(k>>i) # 区間[l,r]に関数 f を作用 def update(self, L,R,f): L += self.N0; R += self.N0+1 """まず伝播させる(オペレータが可換なら必要ない)""" #登りながら関数 f を合成 while L < R: if R & 1: R -= 1 self.laz[R] = self.compose(self.laz[R],f) if L & 1: self.laz[L] = self.compose(self.laz[L],f) L += 1 L >>= 1; R >>= 1 # values[k] を取得。 def point_get(self, k): res = self.val[k] k += self.N0 while k: if self.laz[k] != self.ID_M: res = self.funcval(res, self.laz[k]) k //= 2 return res # values[k] = x 代入する def point_set(self, k): self.thrust(k+self.N0) self.val[k] = x class segment_tree: __slots__ = ["op_M", "e_M","N","N0","dat"] def __init__(self, N, operator_M, e_M): self.op_M = operator_M self.e_M = e_M self.N = N self.N0 = 1<<(N-1).bit_length() self.dat = [self.e_M]*(2*self.N0) # 長さNの配列 initial で初期化 def build(self, initial): assert self.N == len(initial) self.dat[self.N0:self.N0+len(initial)] = initial[:] for k in range(self.N0-1,0,-1): self.dat[k] = self.op_M(self.dat[2*k], self.dat[2*k+1]) # a_k の値を x に更新 def update(self,k,x): k += self.N0 self.dat[k] = x k >>= 1 while k: self.dat[k] = self.op_M(self.dat[2*k], self.dat[2*k+1]) k >>= 1 # 区間[L,R]をopでまとめる def query(self,L,R): L += self.N0; R += self.N0 + 1 sl = sr = self.e_M while L < R: if R & 1: R -= 1 sr = self.op_M(self.dat[R],sr) if L & 1: sl = self.op_M(sl,self.dat[L]) L += 1 L >>= 1; R >>= 1 return self.op_M(sl,sr) def get(self, k): #k番目の値を取得。query[k,k]と同じ return self.dat[k+self.N0] n,Q = map(int,input().split()) lrb = [list(map(int,input().split())) for _ in range(Q)] seg = segment_tree_dual(n+1, max, max, ID_M=1) seg.build([1]*(n+1)) for l,r,b in lrb: seg.update(l,r,b) seg.propagate_all() res = seg.val seg2 = segment_tree(n+1,min,1<<30) seg2.build(res) for l,r,b in lrb: if seg2.query(l,r) != b: print(-1) exit() print(*res[1:])